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ABSTRACT

This research evaluated the influence of land use and soil classification,
as stratified by taxonomic soil order, on the spatial distribution of soil or-
ganic carbon (SOC) and soil organic nitrogen (SON) of the Rio Grande de
Arecibo (RGA) watershed, Puerto Rico. The objectives were to quantify the
present state of SOC and of SON stocks and potential C sequestration capa-
bility of the watershed to 1-m depth. Samples were taken from representative
soils of the watershed occupying 39,361 ha (or 87.3% of the total watershed
area) under secondary forest, pasture, or agricultural land use. Soils of the
watershed store 5.02 x 10¢ Mg of SOC and 0.48 x 10° Mg of SON at a depth of
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100 cm. The weighted mean SOC and SON contents of the 0- to 15-cm layer
of the watershed were 4.33 kg C/m? and 0.390 kg N/m?, respectively, whereas
at 0 to 100 cm it was 11.13 kg C/m? and 1.08 kg N/m?, respectively. The soil
mapping unit X land use interaction represented the best area-wide esti-
mates of soil organic matter because there was improved resolution on a
spatial scale. Forest and pasture soils contained higher amounts of SOC
(12.8 and 9.79 kg C/m?, respectively) (P < 0.05) than soils under cropland
(7.90 kg C/m?) for the 0- to 100-cm depth. The 0- to 15-cm SOC was ranked as
Oxisols = Ultisols > Inceptisols, with values of 5.85, 4.77, and 3.18 kg C/m?,
respectively (P < 0.05); and for the 0 to 100 cm, were ranked as Oxisols > Ul-
tisols > Inceptisols, with values of 18.3, 13.3, and 6.71 kg C/m?, respectively.
We estimate that an additional amount of 46,627 Mg C could be sequestered
within the watershed if 50% of the agricultural or pasture land were reverted
to forest. This estimate represents a modest 1.0% increase above the current
watershed C level.

Key words: soil organic matter, soil organic carbon and nitrogen, carbon se-
questration, land use, tropical watershed

RESUMEN

Reservas de materia organica en suelos y distribucién espacial en la cuenca
del Rio Grande de Arecibo

Se estudié la influencia de los factores orden de suelo, fase y uso de te-
rreno sobre la distribucién espacial del carbono organico (SOC) y nitrégeno
total del suelo (SON) en la cuenca del Rio Grande de Arecibo, Puerto Rico.
Los objetivos eran cuantificar las reservas de C y N en suelos y el potencial
de secuestro de C de la cuenca. Se tomaron muestras de suelos representa-
tivos de la cuenca de un drea de 39,361 ha (o 87.3% de la totalidad del area de
la cuenca) bajo bosque secundario, pastura y uso agricola. Los suelos de la
cuenca almacenan 5.02 x 10° Mg de SOC y 0.48 x 10° Mg de SON a una pro-
fundidad de 100 cm. Las medias ponderadas de SOC y SON a 15 cm de pro-
fundidad fueron 4.33 kg C/m? y 0.390 kg N/m?, respectivamente, y a una pro-
fundidad de 100 cm fueron de 11.13 kg C/m? y 1.08 kg N/m?, respectivamente.
La interaccion entre unidad de mapa y uso de terreno representé el mejor
estimado de SOC por la mayor resolucién espacial. Suelos bajo bosque se-
cundario y pasturas tuvieron mayor SOC (12.8 y 9.79 kg C/m?, respectiva-
mente) (P < 0.05) que suelos bajo uso agricola (7.90 kg C/m?) a una profundi-
dad de 100 cm. El SOC a una profundidad de 15 cm fue similar entre Oxisoles
y Ultisoles, los que juntos fueron mayores que los Inceptisoles con valores
de 5.85, 4.77, y 3.18 kg C/m?, respectivamente. Estimamos que la cuenca
puede secuestrar 46,627 Mg C adicionales, lo cual representa un aumento de
1.0% sobre el nivel actual de C.

Palabras clave: materia organica en suelo, secuestro de carbono, uso de
terreno, cuenca hidrografica

INTRODUCTION

Organic carbon (C) in world soils to 1-m depth hold nearly 3.3% of
the global C stocks, estimated at 4.606 x 10'® Mg (Lal, 2004; Lal, 2006).
Most of the carbon stored in soil organic matter is considered stable
with long residence time (Buyanovsky et al., 1994; Hsieh, 1996), and
world soils store more organic and inorganic C than that present in the
atmosphere and vegetation combined (Lal, 2004). The depletion of or-
ganic matter via oxidation because of intensive soil cultivation leads to
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C loss as CO, production leading to increased atmospheric C loading.
Lal et al. (2007) estimated that on a global basis, between 26 to 43% of
the original total soil organic C (SOC) pool has been lost, and most cul-
tivated soils have lost 50 to 75% of their antecedent C pool. Cultivated
soils are a net source of C to the atmosphere when the amounts of C
output (erosion, gaseous, leaching, vegetative removal) exceed the
magnitude of input (brought on by litterfall, plant residue, root bio-
mass). However, soils under proper management can mitigate atmo-
spheric C increase and ameliorate global warming.

Storage of SOC is especially important in the tropics because this
region holds more than one-third of the world’s soil area. There is a
need for increased agricultural production, and many soils are sub-
jected to degradation (Eswaran et al., 1993; Lal et al., 2007). This as-
pect is especially important for the Caribbean because by the end of the
nineteenth century most land areas had been deforested and were un-
der some form of management or cultivation. In Puerto Rico in partic-
ular, much of the agricultural land has been abandoned because of pop-
ulation migration to cities. Since the 1950s, agricultural land of the
mountainous interior has reverted to secondary forests and unman-
aged pasture (Aide and Grau, 2004; Grau et al., 2004).

Stocks of SOC and potential sequestration have been estimated on a
world-wide scale (Eswaran et al., 2000; Lal, 2004) and for soils in Latin
America (Liegel, 1992; Bernoux and Volkoff, 2006) with an estimated 90.3
x 108 Mg C and a mean C density of 10.2 kg C/m? at 0 to 100 cm. There
have been some reports on the status of SOC in the Caribbean (Barreteau
et al., 2004; Feller et al., 2006) and for the island of Puerto Rico (Weaver et
al., 1987; Beinroth et al., 1992; Lugo-Lépez, 1992; Beinroth et al., 2003;
Johnson and Kern, 2003). For example, Beinroth et al. (1992) used soil sur-
vey information to produce estimates of 14.0 kg C/m?, 12.8 kg C/m? and
12.2 kg C/m? in Oxisols, Ultisols, and Inceptisols, respectively. In a study
conducted in a secondary forest in the central part of Puerto Rico, Weaver
et al. (1987) partitioned the area into four broad geologic associations
based on geologic origin. They found that SOC content in the top 23 cm
was 9.93 kg C/m?2, 7.83 kg C/m?, and 9.06 kg C/m? in shallow volcanic clays,
sandy granitic soils, and limestone soils, respectively, in subtropical moist
forests. Beinroth et al. (2003) used soil survey information at the soil series
level to estimate the amount of SOC stored in the Rio Grande de Arecibo
(RGA) watershed to a depth of 1 m. Their SOC watershed estimate was 4.8
x 106 Mg of SOC, about 62% of which was contained in the top 30 cm of the
soil (Beinroth et al., 2003). Some of the drawbacks associated with the
above cited publications are attributed to the lack of site-specific data, and
to not using the US Soil Taxonomy as a reference base, as occurs for
Weaver et al. (1987).
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Evaluation of soil C stocks and sequestration is usually done by us-
ing ecoregion, soil type or land management units. Because of the
strong influence of climate on SOC levels, greater precision may be
achieved if monitoring is conducted within regions containing similar
climatic conditions as occurs at the watershed scale. We are unaware of
any published study using the watershed as the study unit for site-spe-
cific evaluation of SON or SOC stocks and sequestration. Understand-
ing how soil organic matter is affected by land use, management, and
soil types is important for assessing the degree of soil C sequestration
(Lal et al., 1998; Silver et al., 2000a; Lal, 2004). The objectives of this
study were to assess the present state of SOC and SON distribution as
influenced by discrete variables (soil classification according to Soil
Taxonomy, land use, soil phase) and to provide an estimate of potential
C sequestration at the watershed scale.

MATERIALS AND METHODS

Site Description

The RGA watershed has an area of 45,067 ha, with 36,500 ha
having greater than 40% slopes. The watershed is located in the
north central part of the island of Puerto Rico bordered by latitudes
18°11’N and 18°20°N, and longitudes 66°32°W and 66°46’W. Before
the 1950s, the majority of the land area had been farmed with crops
such as coffee (Coffea spp.), plantains (Musa spp.), sugarcane (Sac-
charum officinarum) and citrus (Citrus spp.). The areas classified as
agricultural have crops such as coffee, plantains, and citrus. Cur-
rently much of the land area formerly under sugarcane has been
abandoned to give place to secondary forests (Aide and Grau, 2004).
The dominant species in the forest areas are Guarea guidonia, Ce-
cropia schereberiana, Inga vera, Prestoea montana, Deondropanax
arboreus, Didymopanax morototoni, and Syzigium jambos, and had
been as such for periods ranging from 15 to 40 years at the time of
sampling in 2004 (Sudrez-Rozo, 2005). Within the RGA watershed,
there are 35 soil series within eight soil orders, which are subdivided
into 79 mapping units based on slope and level of erosion (Gierbolini
et al., 1979; Acevedo, 1982). The major soil orders (series in paren-
theses) are Ultisols (Consumo, Humatas, Lirios, Maricao), Oxisols
(Los Guineos), and Inceptisols (Alonso, Mtcara, Caguabo, Pellejas,
Maraguez, Vivi) comprising 96% of the total land area of the water-
shed. Most upland pedons are Oxisols and Ultisols having high clay
content and acid conditions, whereas Inceptisols tend to be coarser
textured.
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Soil sampling strategy

Land use information was obtained from a digital version of a land
use map developed in 2000 (CSA group, unpublished, 2000) using the
USGS classification system (Anderson, 1976). About 5,706 ha (12.7% of
the watershed) is considered non-soil (rocky outcrops, residential, com-
mercial, streams, and lakes); 32,006 ha (71.0%) is secondary forest
land; 3,776 ha (8.4%) is pasture land; and 3,579 ha (7.9%) is agricul-
tural land. A GIS database map was created by delineating the RGA
watershed, which includes all of the area south of the dam at Lago Dos
Bocas reservoir. A digital version of the soil mapping units as assessed
by U.S. Soil Taxonomy (Soil Survey Staff, 2004) was obtained from the
Soil Survey Geographic Database (USDA-NRCS, 2001), whose bound-
aries were delineated as polygons within the GIS base map. The main
and secondary roads were obtained from the TIGER/Line data file pub-
lished by the U.S. Bureau of the Census for the United States (ESRI,
2000), and a satellite image from IKONOS (Space Imaging, LLC,
2001)%. The most representative soil mapping units of the watershed
were identified by using the GIS-based map. A map with 18 soil map-
ping units (each mapping unit with a minimum area greater than 453
ha) was developed, including three units with an area of less than 453
ha (CuF2, MuF2 and PeF2) for the purpose of comparing eroded and
uneroded phases. Twenty-one mapping units were sampled, represent-
ing 33,362 ha (or 74.0% of the total land area) and 39,361 ha (or 87.3%
of the land area) when data were grouped by land use. This layer of in-
formation was overlapped with the layer containing the main roads.

Each soil mapping unit had several contiguous and non-contiguous
polygons. On the basis of total areal extent of the soil mapping units,
one pedon was sampled for approximately every 400 to 500 ha irrespec-
tive of the number of polygons (Figure 1). For example, the Pellejas se-
ries (PeF) had a total area of 7,867 ha distributed among 28 soil poly-
gons; 23 samples were collected. Three additional samples were
collected from the eroded counterpart (Table 1). Within the potential
polygon to be sampled, there were state and municipal roads that in-
tersected. Each segment of the road that coincided with the polygon to
be sampled had kilometer markings. The specific sampling point
within the polygon was selected at random from the pool of numbers
that corresponded to the kilometer markings of the roads. To avoid the
disturbance effect of near-road activities and to make sure the intended

5Company and trade names in this publication are used only to provide specific infor-
mation. Mention of a company or trade name does not constitute a warranty of equip-
ment or materials by the Agricultural Experiment Station of the University of Puerto
Rico, nor is this mention a statement of preference over other equipment or materials.
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FIGURE 1. Spatial distribution of sampling sites including soil order and land use
polygons.

soil polygon was sampled, the sampling area was from 25 m and 100 m
from trafficable roads. The geographic coordinates of each sampling
site were taken with a Global Positioning System (GPS) (Model Trim-
ble Pro XR, Trimble Inc. Sunnyvale, CA) with sub-metric resolution.
Soil samples were collected by using an auger at 0- to 15-, 15-to 30-, 30-
to 50-, 50- to 75-, and 75- to 100-cm depths, or to a lithic or paralithic
contact if it was shallower. A total of 107 pedons and 524 soil samples
were collected for analysis with the number of samples distributed pro-
portionally to the area of the 21 mapping units (Table 1).

Soil chemical and physical analyses

Soil samples were air-dried and gently sieved to pass through a 2-
mm sieve to remove rock fragments and coarse roots. Soil total C and N
concentration in ground soil subsamples (<0.05 mm fraction) were
quantified by automated dry combustion by using a LECO C and N an-
alyzer (Leco Corp., St. Joseph, MI) at the Soil, Plant and Water Labo-
ratory of the College of Agricultural and Environmental Sciences, Uni-
versity of Georgia. Carbon concentrations were converted to total
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TABLE 1. Number of samples taken by soil series and mapping units within the Rio
Grande de Arecibo watershed.

Soil Soil Area Number Number

Soil Series Order mapping unit (ha) of pedons of samples
Alonso Inceptisol AoF2 766 3 14
Caguabo Inceptisol CbF2 756 3 14
Maraguez Inceptisol MaF2 2283 4 20
Mucara Inceptisol MuF 1658 4 20
Mucara Inceptisol MuF2 207 3 15
Pellejas Inceptisol PeF 7867 23 111
Pellejas Inceptisol PeF2 262 3 15
Vivi Inceptisol Vm 533 1 5
Los Guineos Oxisol LgF 2034 4 20
Los Guineos Oxisol LgE 713 2 10
Los Guineos Oxisol LuF 657 2 10
Los Guineos Oxisol LME 1301 3 15
Los Guineos Oxisol LyFx 560 2 10
Consumo Ultisol CpF 518 3 15
Consumo Ultisol CuF2 66 3 15
Humatas Ultisol HmF 5203 16 79
Humatas Ultisol HmF2 2498 10 48
Humatas Ultisol HmE 495 3 14
Humatas Ultisol HmE2 470 3 15
Lirios Ultisol LeF2 4005 9 45
Maricao Ultisol MkF2 770 3 14

Total 33,622 107 524

content per square meter based on sampling interval depth and soil bulk
density as reported by the Soil Survey Staff (2004). Each layer was calcu-
lated separately and integrated over depths of 0 to 15, 0 to 30 and 0 to 100
cm. Soil pH was measured on the supernatant of the <2 mm soil fraction
using 1:2 soil:water mixtures, after shaking for one hour and separating
the soil-water mixture by centrifugation. The mean pH of the soils ranged
from 3.8 to 6.9. No evidence of calcium carbonate was found; thus the to-
tality of the quantified carbon was organicin nature. Soil particle distribu-
tion was determined for 0- to 15-cm depth intervals by using a laser dif-
fraction particle size analyzer (x-values) (Model LS-230, Beckman-Coulter
Inc., Fullerton, CA) and converted to values quantified by using the pi-
pette method (y-values) (Soil Survey Staff, 1996) with the regressions:

y(clay) = 0.688x+ 13.5; 1> =092  [1]

y(sand) = 0.851x +0.788; I = 0.94  [2]
which were determined empirically from selected samples.
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Spatial variability and statistical analysis

Spatial distribution maps of the SOC and SON content were pre-
pared by using ArcMap v. 8.2 (ESRI, Redlands, CA). The intersection
of mapping unit, land use and soil order and their combinations was
delineated. Each of the polygons (mapping unit, soil order or land
use) received the same SOC and SON value that corresponded to
mean values for each factor. We used the data from Suéarez-Rozo
(2005) to evaluate the effect of soil order on C associated with above-
ground biomass of forest vegetation of the RGA watershed. The
above-ground biomass C data was grouped a posteriori, because it
had been classified on the basis of life-zones and geological units. An
analysis of variance (ANOVA) on the effects of soil order on above-
ground biomass C was performed by using a completely randomized
design.

An ANOVA was performed to determine the effects of soil classi-
fication on C and N stocks as stratified by soil order and land use.
The statistical design was a completely randomized design with soil
order and land use as main effects. The effect of depth was included
when evaluating C and N concentration variation in the soil profile.
The number of replicates for each order/land use varied proportion-
ally with the land area of each of the effects. To compare eroded and
uneroded soil phases we used Student’s t-test. All statistical analy-
ses were performed with InfoStat V3.0.2. (Universidad Nacional de
Coérdova, Argentina) using a significance level of P < 0.05. A multiple
regression model was constructed to examine the effects of categor-
ical variables (land use, soil order, soil moisture regime, and miner-
alogy) and continuous variables (elevation, soil pH, and silt+clay
proportion) on SOC using proc mixed of SAS (SAS Institute, Cary,
NC). The model was constructed by selecting variables using step-
wise procedure adapted for mixed type variables (categorical and
continuous).

RESULTS

Soil organic carbon and nitrogen concentrations

Soil organic C and SON concentrations were affected (P < 0.05) by land
use x depth and soil order x depth interactions. Greater SOC and SON
concentrations were generally observed at the top of the soil profile, and
values generally decreased with depth (Figure 2). The SOC concentrations
were generally in the order of Oxisol > Ultisol > Inceptisol (Figure 2a), and
SON concentrations were Oxisol = Ultisol > Inceptisol (Figure 2b). When
evaluating the effects of land use on SOC and SON, concentrations at 0- to
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FIGURE 2. Concentration depth profiles of soil organic carbon as affected by soil order
(A) and land use (C); and of soil organic nitrogen as affected by soil order (B), and land use
(D). Horizontal error bars represent standard errors. Soil order or land use within a depth
with different letters are significantly different at P < 0.01. NS denotes non-significance.

15- and 15- to 30-cm depths were greater in forest than in pasture, with
similar values among pasture and agriculture. Land use did not affect
SOC and SON concentrations at greater depths (Figures 2¢ and 2d).

Soil organic carbon and nitrogen content as influenced by soil order and

land use

The SOC and SON contents were significantly influenced by the
main effects of soil order and land use (P < 0.05), but not by their inter-
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action (Table 2). At 0- to 15- and 0- to 30-cm depths, SOC and SON con-
tents were greater in Oxisols and Ultisols, and both orders had higher
values than Inceptisols. At 0- to 100-cm depth, Oxisols had higher SOC
levels than Ultisols, with values of 18.3 and 13.3 kg C/m2, respectively,
values which in turn were higher than those of Inceptisols (6.71 kg C/
m?). At 0- to 100-cm depth, SON was highest in Oxisols and Ultisols,
with lowest values in Inceptisols.

Soils under agricultural land use had significantly lower mean SOC
contents (7.90 kg C/m?) than pasture (9.79 kg/C m?) and forest (12.8 kg
C/m?) soils, with no significant difference between the latter two land
uses at 0- to 100-cm depth. Similar trends were observed with SON
contents. Soils under pasture and agriculture at 0- to 15-cm depth had
similar SOC and SON contents, but lower values than those of soils un-
der forest. The SOC quantified by us in eroded and uneroded phases (as
mapped by USDA-NRCS Soil Survey) were not significantly different
(P > 0.05), except in the Consumo soil series (15.4 vs. 9.8 kg C/m?) (P <
0.05). Alvarado (2006) has developed quantitative relationships be-
tween SOC in surface soil and that at greater depths as classified by
soil order or life zones, for the purpose of improving C accounting in
soils. When data at greater depths are not available in the RGA water-
shed, quantification of SOC and SON to a depth of 0 to 15 ¢cm within
any land use or soil order can be used to estimate SOC and SON to a
depth of 100 cm based on the following equations:

SOC,,, = 0.290 x SOC, 5., +0.975;1°= 0659 [3]

SON,, = 0275 x SON 5. +1.10;r'=0.610  [4]

Soil organic carbon and nitrogen distribution within the RGA
watershed

The GIS layers of soil order and land use each had three experimen-
tal units associated with the analysis, whereas mapping unit and map-
ping unit x land use had 22 and 40, respectively (Table 3). The area rep-
resented in the analysis decreased in the order of land use, soil order,
mapping unit and mapping unit x land use, with area-wide SOC and
SON stocks concomitantly following these trends. The intersection of
the mapping unit and land use layers represented an area of 31,307 ha



TABLE 2. Soil organic carbon and soil organic nitrogen among different soil orders and land uses within the RGA watershed. Values within o
main effect with different letters are significantly different (P < 0.05). Standard deviations are in parenthesis.

SOC (kg C/m?) SON (kg N/m?)

Main effect 0-15 cm 0-30 cm 0-100 ecm 0-15 cm 0-30 cm 0-100 cm

-------------------------------------- Soil Order - - - === - m s e e e
Oxisol 5.85(2.4)a 9.8 (3.5)a 18.29(5.9) a 0.46 (0.2) a 0.78 (0.3) a 1.51 (0.6)a
Ultisol 4.77(1.6)a 7.64(2.5)a 13.30(4.5)b 0.45(0.1) a 0.74 (0.2) a 1.32(0.4)a
Inceptisol 3.18(1.9b 4.51(2.5)b 6.71(3.7) ¢ 0.31(0.1)b 0.45(0.2) b 0.7(0.3)b

-------------------------------------- Land Use------cccmmmm i e e
Forest 5.02(2.2)a 7.72(3.4)a 12.80(2.3)a 0.45 (0.2) a 0.71 (0.3) a 1.21 (0.5)a
Pasture 3.78(1.2) b 6.16 (2.6) a 9.79(1.2)a 0.36 (0.1) b 0.59 (0.2) a 1.04 (0.5)a
Agriculture 2.81(1.3)b 4.4(24)b 7.90 (4.9 b 0.28 (0.1) b 0.44 (0.2) b 0.83 (0.5)b
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TABLE 3. Watershed based cumulative and mean values of soil organic carbon (SOC) and soil organic nitrogen (SON) contents in the Rio
Grande de Arecibo watershed.

Stocks SOC content mean values SON content mean values
Area
Layers represented n C N 0-15 em 0-100 em 0-15 em 0-100 cm
ha ae--- x108Mg-----  ----- kg C/m?2----- ----- kg N/m2-----
Map unit 33,622 21 3.61 0.35 4.13 10.84 0.38 1.05
Map unit*land use 31,307 40 3.48 0.34 4.33 11.13 0.39 1.08
Soil Order 37,779 3 4.15 0.40 4.21 10.99 0.38 1.05
Land use 39,361 3 5.02 0.48 4.63 12.45 0.42 1.18
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or 69.5% of the total land area, which is less than the area represented
only by mapping units, soil order, or land use. When the intersection of
mapping unit and land use layers was performed, areas corresponding
to mapping units not sampled were not included, but there is greater
detail in the SOC spatial distribution. The latter will lead to a greater
variation in the range of values and improved accuracy in the geo-
graphic estimate. For example, at the upper eastern part of the water-
shed, the SOC content varied between 3.50 and 6.00 kg C/m? when con-
sidering only mapping unit, and from 2.76 to 6.80 kg C/m2? when
incorporating land use information with mapping unit. Since the map
with the greatest resolution will undoubtedly leave some areas out of
the analysis, watershed-based cumulative estimates of SOC and SON
stocks should use the layering which will include the greatest land area
(land use effect), but will result in the lowest accurate estimate
(Figure 3). In contrast, if the user is interested in obtaining spatially
based watershed SOC and SON estimates, the mapping unit x land use
intersecting layering should be used (Figure 4).

The mapping unit x land use area-weighted mean SOC and SON
content was 4.33 kg C/m? and 0.390 kg N/m? for 0- to 15-cm depth, re-
spectively, whereas for 0 to 100 ¢cm it was 11.13 kg C/m? and 1.08 kg N/
m?, respectively, and represents the best area-wide mean estimate. The
land area of 39,361 ha (or 87.4% of the total watershed area) contains
5.02 x 106Mg of SOC and 0.48 x 10 Mg of SON to a depth of 0 to 100 cm.
Bernoux and Volkoff (2006) estimated soil carbon stocks for Puerto Rico
at 93 x 10¢ Mg. Although the RGA watershed accounts for 4.4% of the
total land area of Puerto Rico, its soils hold 5.6% of the C content of
Puerto Rico.

DISCUSSION

Beinroth et al. (1992) reported that SOC to 100-cm depth in Oxisols
of Puerto Rico was 14.0 kg C/m?, 12.8 kg C/m? in Ultisols, and 12.2 kg
C/m? in Inceptisols, without considering the effects of land use. Our
SOC measurements in the RGA watershed are greater for Oxisols,
lower than those for Inceptisols, but similar to those of Ultisols esti-
mated by Beinroth (1992), who used data from 167 pedons collected
throughout Puerto Rico. Furthermore, our site-specific values are gen-
erally higher than the overall mean values of 10.9 kg C/m? reported by
Beinroth et al. (2003). The higher SOC and SON contents at 0- to 15-cm
depth of highly weathered Ultisols and Oxisols, as compared to less
weathered Inceptisols, are in accordance with previous trends of en-
zyme activities which have been linked to improved soil quality in the
RGA watershed (Acosta-Martinez et al., 2007).
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Il 790 (Agricutture)

N " 9.79 (Pasture)
A | 12.8 (Forest)
0 2.5 5 10 km

FIQURE 8. Soil organic carbon content (kg C/m2, 0 to100 em) by land use layering in
the Rio Grande de Arecibo watershed.

One of the classification factors used to evaluate the spatial varia-
tion in SOC and SON was the soil order level using US Soil Taxonomy.
Our results do not imply that soil order is the major driving factor in-
fluencing SOC and SON. Soil order has been found to be useful as a
classification factor for policy considerations in C accounting and in glo-
bal estimates, since soil boundaries delineated by soil order are widely
available (USDA-NRCS, 2001; Alvarado, 2006). Soil order, land use and



J. Agric. Univ. P.R. VOL. 94, NO. 1-2, JANUARY-APRIL 2010 15
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Il 156-500
I 501-7.00
B 7.01-9.00
B 001-12.00
I 12.01-16.00
B 15.01-19.00
I 19.01-27.00

FIGURE 4. Soil organic carbon content (kg C/m2, 0 to100 em) by mapping unit*land
use layering in the Rio Grande de Arecibo watershed.

soil moisture regime have been found to account for 50% of the variabil-
ity in whole-profile SOC (Beinroth et al., 1996). The general conditions
that enhance the formation of soils lead to the presence or absence of
major diagnostic horizons which are often used as classification crite-
ria. The diagnostic properties at the order level are probably not what
controls soil organic matter in the watershed, but rather geomorphol-
ogy, mineralogy, and particle size distribution, which in turn influence
the diagnostic horizons. Although we did not evaluate geomorphology
as a factor, Cruz (2004) found that north-facing slopes and soils within
the toe-slope position of the landscape of the RGA watershed tended to
have higher SOC and SON at 0- to 15- and 0- to 100-cm depths than
other parts of the landscape.

In the RGA watershed, about 63% of the soils originate from volca-
niclastic rocks of andesitic and basaltic composition giving rise to Ulti-
sols and Oxisols; 31% of the soils are plutonic of quartzdiorite and gra-
nodiorite composition, giving rise primarily to Inceptisols (Beinroth et
al., 2003; Suarez-Rozo, 2005). The subtropical wet forest ecological life
zone (Holdrige, 1967) covers about 77% of the RGA land area whereas
subtropical moist forest covers about 15% of the area. Sudrez-Rozo
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(2005) did not find above-ground forest biomass to be influenced by rock
formation type or ecological life zone. Our further analysis of the data
gathered by Suarez-Rozo (2005) reveals that all soil orders have similar
forested biomass C with mean values (standard deviation in parenthe-
sis) of 3.44 (£ 2.39), 3.48 (£ 0.941), and 3.62 (= 1.69) kg C/m? for Oxisols,
Ultisols and Inceptisols, respectively. If we assume that there are sim-
ilar C inputs among forested areas (based on above-ground biomass),
then the variation in soil C among soil orders was due to soil properties
influencing decomposition, properties which include moisture and tem-
perature, soil texture, aggregate size distribution, and soil mineralogy.
Precipitation and temperature are two properties that reflect soil
development, causing in most instances diagnostic horizons and other
major characteristics which can be used as a basis for soil order classi-
fication. Since we did not have site-specific data of precipitation and
temperature, elevation could serve as a proxy. We tested a multiple re-
gression model controlling for land use and soil order that included the
combination of soil moisture regime, mineralogy, elevation, soil pH,
and silt+clay. The interactions of the variables were not found to be sig-
nificant (P < 0.05). Soil moisture regime and mineralogy were not sig-
nificant when these were included in the model in combination with
soil order. Elevation and soil pH were important predictors of SOC if
the effect of silt+clay was not included in the model, but not if silt+clay
was present. Elevation was always an important factor in the model.
Because SOC to 1-m depth was similar in forest and pasture soils and
in Ultisols and Oxisols, these were combined as separate groups. Our
data demonstrates that with prior knowledge of soil order and land use
combinations, elevation and soil silt+clay proportion can be used as
predictors of SOC to depths of 15 and 100 cm in the RGA watershed
(Table 4). For example, a 100-m change in altitude with a fixed clay con-
tent will result in a SOC change of 0.811 kg C/m? at a constant silt+ clay
content; and a unit change of 1% in soil silt+clay at a constant elevation
will result in a SOC change of 0.268 kg C/m?2 to a depth of 100 cm.
Ultisols and Oxisols had similar silt+clay contents (mean of 78.0%),
which were higher than that for Inceptisols within their corresponding
land use (P < 0.05). Land use did not influence soil silt+clay content.
Over 60% of the area covered by Inceptisols in the watershed corre-
sponds to Pellgjas series, which have a fine-loamy over sandy texture.
In contrast, Ultisols and Oxisols tend to have clayey or clay-loam tex-
ture, and are primarily dominated by kaolinite clay, goethite and gibb-
site (Beinroth, 1971; USDA-NRCS, 2007) which in combination are
known to influence soils to have a high degree of aggregate stability
(Schwertmann and Herbillon, 1992). Ultisols were found to have in-
creased large macro-aggregate stability, and higher SOC concentra-



TABLE 4. Regression equations from the multiple regression model predicting SOC to a depth of 1 m in the Rio Grande de Arecibo watershed.

Dependent variable Soil Landuse Equation!

SO0C,,2 Inceptisol Agriculture 0.811 x ele + 0.268 x silclay - 15.98
Inceptisol Forest and pasture 0.811 x ele + 0.268 X silclay - 13.02
Ultisol and Oxisol Agriculture 0.811 x ele + 0.268 X silclay - 13.24
Ultisol and Oxisol Forest and pasture 0.811 x ele + 0.268 X silclay - 10.28

SOC 5,2 NS? Agriculture 0.335 x ele + 0.100 x silclay - 5.79
NS Forest 0.335 x ele + 0.100 X silclay - 5.45
NS Pasture 0.335 x ele + 0.100 X silclay - 4.78

lele is elevation x 100 m; silclay is the soil silt+clay content.
2The 12 for SOC,,, was 0.672 and for SOC, . it was 0.60.
3NS, the term was not significant (P < 0.05).
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tions than Inceptisols (Sotomayor-Ramirez et al., 2010). We hypothe-
size that the increased aggregate stability of Oxisols and Ultisols may
account for enhanced C protection within aggregates and increased
SOC (Feller and Beare, 1997; Six et al., 2000; Denef et al., 2004).

The Oxisols from the RGA watershed are classified as Humic Hap-
ludox according to the Soil Taxonomy (Soil Survey Staff, 1999), all of
which implies that they should have SOC levels of 16 kg/m? to 100-cm
depth. Our SOC measurements to 100 cm for Oxisols are higher than
those reported by Beinroth et al. (1992) (mean of 14.0 kg C/m?) using
soil survey data, and also for Udic and Ustic Oxisols of the Amazon re-
gion under undisturbed forest vegetation (range of 8.9 to 10.51 kg C/m?)
(Morales et al., 1995). The higher values found for Udic Oxisols in our
study suggest that other properties not diagnostic at the order level of
Soil Taxonomy, possibly texture and mineralogy (although not detected
in the multiple regression model), are an important influence in SOC
storage. About 60% of the soil area classified as Oxisols in the RGA wa-
tershed is under secondary forest vegetation, and our results are in ac-
cordance with SOC estimates by Johnson and Kern (2003) for Oxisols
dominated by forest vegetation in Puerto Rico.

Soils under pasture and agriculture at 0- to 15-cm depth had similar
SOC and SON contents but had significantly lower (P < 0.05) values
than those under forest. In contrast, SOC and SON were similar under
pasture and forest to a depth of 100 cm (P > 0.05). In the RGA water-
shed, soils under pasture had previously been under agricultural land
use and are in the process of reverting to a more stable ecosystem such
as forest if kept unmanaged. Puerto Rico has one of the highest rates of
forest regeneration in the world (Aide and Grau, 2004), and pasture
soils could potentially be accumulating additional C as succession to
forest-land occurs. Torbert et al. (2004 ) observed similar values of SOC
between forested soil and permanent pasture in clay loam soil to 1-m
depth. In contrast, Cerri et al. (2003) modeled the impact of converting
a Brazilian forest area to pasture on SOC content, and found an initial
decrease in the SOC stock followed by a slow rise. After 88 years, pas-
ture soil contained 53% more C than the forest soil. The observed re-
duction in the SOC content of agricultural soils could be related to ag-
gregate disruption during cultivation, and increased erosion as
cultivated soils tend to have less vegetative cover. Sotomayor-Ramirez
et al. (2010) reported that the macroaggregate (>2,000 um-size class)
proportion decreased whereas small macroaggregates and large micro-
aggregates increased (250- to 2,000- and 50- to 250-um aggregate size
classes) in soils under agriculture; SOC concentrations within aggre-
gates were similar among aggregate size classes but were lower than
those under forest. These results support studies summarized by Lal
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(2004), that changes in land use cause losses of SOC because of changes
in vegetation and soil management practices.

The potential SOC levels for a given geographic location and cli-
mate are reached when “reducing” factors are minimized and are
controlled by the silt + clay content and aggregate formation (In-
gram and Fernandes, 2001; Chevallier et al., 2004; Denef et al.,
2004; Plante et al., 2006). Macroaggregate-associated C is most sus-
ceptible to losses due to reducing factors such as cultivation, residue
removal, and tillage. Silt+clay-associated C is the most susceptible
to losses due to erosion (Ingram and Fernandes, 2001). If the factors
limiting the actual capacity of soils to sequester C are alleviated by
some sort of practice, then the soils can increase their C content to
an “attainable” C level, which in turn will be limited by climate and
primary productivity. Beinroth et al. (2003) based their estimate of
the potential SOC sequestration of the watershed on the premise of
restoration of eroded phases to their original level of organic matter.
Although eroded soils account for 39% of the watershed, we did not
find significantly lower SOC and SON contents in eroded phases, ex-
cept in Consumo soil series, for which the eroded phase is less than
100 ha.

We hypothesize that soils under forested vegetation are near the
current maximum C sequestration potential for each of their corre-
sponding soil mapping units. Forest soils cover about 81.3% of the sur-
veyed area and account for 84.3% of the total C of the watershed.
Within each soil order, the maximum C potential could be reached
solely by reverting pasture and agricultural lands to forested land use
or planting high biomass-yielding crops such as environmental cane
(Saccharum spontaneum). Assuming that only about 50% of the land
area under pasture and agriculture, or about 3,523 ha, is converted to
forested land, an additional amount of 46,627 Mg of C could be seques-
tered. This amount represents a modest 1.0% increase above the cur-
rent level. We estimate that at soil C accumulation rates ranging from
210 to 1,300 kg C/ha/yr (Silver et al., 2000a), it would take from 10 to 32
years for the managed lands reverted to forest to reach maximum C
levels.

CONCLUSIONS

The spatial distribution maps of SOC and SON in the RGA wa-
tershed describe the spatial variation in present-state soil C and N
storage and serve as a baseline for the future evaluation of the ef-
fects of land-use changes on SOC sequestration. Soils under forest
and pasture, and soils classified as Oxisols and Ultisols, store the
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majority of soil organic matter. Elevation and soil texture (using the
silt+clay proportion) were important predictors of SOC within spe-
cific soil order and landuse combinations. The maintenance of
present state SOC in unmanaged forested areas or improving soil C
storage in managed sites such as agriculture can be achieved
through formation and preservation of soil macroaggregates. How-
ever, coarser-textured Inceptisols will be limited in their capacity to
form macroagregates and hence store SOC because of reduced soil
specific surface area. As a management option, it is important to
continue the implementation of best management practices on erod-
ible soils, especially on agricultural lands. The extent of C storage in
the RGA watershed should be similar to that of other watersheds of
comparable geology, ecological life zones and land use in the Carib-
bean.
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