INVESTIGATIONS ON THE ROOT OF MANIHOT UTILISSIMA POHL

(PROGRESS REPORT)

By H. E. CRUZ MONCLOVA Ch. E. Agricultural Experiment Station, Río Piedras, P. R.

The work appearing now, is the incomplete result of experiments undertaken in cooperation by the Divisions of Agronomy and Industrial Chemistry, of the Agricultural Experiment Station, on the cassava plant. The complete and final results will appear as soon as they are available.

METHODS OF ANALYSIS

1. Determination of Hydrocyanic Acid.

The principal aims of the determination of hydrocyanic acid in the cassava root were two:

First.—To compare the hydrocyanic acid content of the varieties of cassava roots under study.

Second.—To find out if possible the hydrocyanic acid content of the cassava roots at different stages of their growth.

After several methods of analysis were tried finally Liebig's Method was selected and adapted to the cassava, as the easier and more accurate.

One hundred grams of sample are weighed and placed in a twoliter flask; together with 1 of liter distilled water and 20 cc. of H_2SO_4 of known specific gravity are added and the flask is connected to a condenser. The distillate is collected in a 500 cc. volumetric flask, into which have been placed 25 cc. of dilute NaOH solution. At least 500 cc. of the distillate should be collected to ensure that all the HCN in the sample is distilled off. After the distillation is finished an aliquot part is taken and titrated with $-\frac{N}{100}$ - AgNO₃. The residue in the flask is saved for the determination of starch and of fiber.

Some trial distillations were made in order to establish the least possible volume of the distillate to be collected for titration. By taking two consecutive portions of distillate of 250 cc. each, and titrating an aliquot of 50 cc. of each separately, it was found that not all the HCN in the sample was collected in the first 250 cc. of dis-

649

650 THE JOURNAL OF AGRICULTURE OF THE UNIVERSITY OF P. R.

tillate passing over, but that there was yet a perceptible amount in the next 250 cc. portion of distillate obtained as shown by the following results:

Variety of Cassava	1st. Portion	2nd. Portion
Carlos Checo	2.9cc.	0.8cc.
Negrona Grande	3.2cc.	0.6cc.
Manuel Pichardo	2.7cc.	0.4cc.

On using $\frac{N}{10}$ solution of AgNO₃ for the titration it was found that it did not afford the most accurate results obtainable under the circumstances. Comparative results are shown below for titrations made with $\frac{N}{10}$ and $\frac{N}{100}$ solutions of AgNO₃.

Cassava Variety	$\frac{N}{10} \text{ AgNO}_3$	N AgNO?	
Tapicurú	0.40cc.	3.4cc.	
M. Pichardo.	0.20cc.	1.6cc.	
Oristalina.	0.20cc.	1.9cc	
New Orleans.	0.10cc.	1.0cc.	
Carlos Checo.	0.15cc.	1.5cc.	

DETERMINATION OF STARCH AND FIBER

The residue from the distillation of the HCN contains in the solution all the starch present in the sample. It has been transformed into dextrose by boiling with the acid. Besides, this residue contains also the fiber of the sample.

The residue is brought to volume of 1 liter at 20° C and filtered. The specific gravity of the filtrate is determined at 20° C by means of pycnometer. From the specific gravity of the liquid, the starch can be calculated by means of a curve made beforehand, for pure dextrose, and taking into consideration all the factors affecting the results. The fiber is obtained after filtering all the liquid; it is washed carefully and then transferred to a tared crucible, and dried at 100° C.

	Growing Period-4½ Months			Growing Period-12 Months			
	Moisture	Fibre ¢	HCN	Moisture	Ash %	HCN	Starch
Mamoro E. A	62 45	1 6276	0 03375	69.23	0.6327	0.0081	18.01
Caiba S. A	02.10	1.0410	0.00010	61 36	6239	0.0108	23.99
Dendi N. A.			0.02430	68 21	7894	0.0108	
Brazii No. 1			0.02205	63 04	1 0955	0 0162	21 22
Brazil No. 2			0.02230	61 62	8736	0.0108	25 50
Alpi Mantelga			0 02510	60 16	1 0443	0.0180	24 96
Naparica			0.03310	50 21	7020	0.0108	27 10
Basiorao			0.02000	00.01	.1009	0.0103	21.10
Tapicurú			0.04320	04.02	.1091	0.0210	
Carlos Checo	64.29	2.0361	0.02497			0.0108	10 74
Negrona Grande	77.26	1.6009	0.02700	66.30	. 5553	0.0135	18.04
Manuel Pichardo	67.54	2.3273	0.02092	59.45	1.0369	0.0108	
Negrona Agria	70.13	1.8276	0.03240				
Peralta	68.13	2.4551	0.01417	65.00	.5907	0.0162	20.15
Madretasa	68.46	2,4074	0.03645				
Govo Vogo	61 77	2 0796	0.01755				
Aipi Mangi	66 04	210100	0.03722				
Alpi Maugi	67 94		0.01687	59.92	9742	0.0081	24.07
Senora, esta en la Mesa	70.04	9 1789	0.02407	00.02			
Mata Gato	70.94	0 1104	0.02700				
Pancha	18.94	2.1194	0.02700				
Cartagena 2da	66.95	1.4205	0.02302				
Dame Más	66.53	2.5220	0.02362				
Mocana 677	65.01	2.1970	0.03307			0.0100	00 30
Negrona Chiquita	73.41	1.6836	0.01350	60.30	.7037	0.0108	20.92
New Orleans	66.24		0.01552	62.98	.8124	0.0054	********
Cristalina	68.49		0.02362	62.48	.9477	0.0108	
Puerto Plata	66.44		0.2160	63.37	.9507	0.0081	23.00
Valencia	66.10			58.34	.9586	0.0135	27.64
Cartagena Santo Domingo	66.88	2,4058	0.02700				
Miracielo	77.45	1.8706	0.02700				
Amorillo				62.27	. 5999	0.01485	20.68
V_No 1				55.70	.7751	0.0108	28.71
X No. 2				47 11	7673	0.0081	29.42
A-NO. 2				68 44	5159	0.0108	18.25
Celba villalba		*******		60 65	5866	0.0108	16.40
Mata Burro				55 02	8570	0.0081	28 71
X-No. 6				53.03	0661	0.0135	25.50
Pana-Borinquen				01.00	70001	0.0270	29.73
Morada Palo Rojo No. 1				65.39	. 7980	0.0270	97 64
Pana				59.08	. 1828	0.0102	10 42
Forastera				65.29	. 5162	0.0081	19.40
Blanquilla				57.38	. 5531	0.0243	20.71
Pata Paloma				63.85	. 5989	0.0162	27.04
Coreana				60.27	.7403	0.0108	26.46
Coreana Amarilla				61.44	.8148	0.0108	26.46
Seda				57.32	1.3876	0.0135	
Seaturnet	Constant States	a second design	1			8	3

DESCRIPTION OF THE ROOTS OF CASSAVA VARIETIES

The ideal root of cassava for industrial purposes, either for starch or flour making must possess a number of characteristics all contributing to a cheaper or better final product. The cassava root must have the proper chemical composition-high starch and protein content, low humidity, low fibre content. The rind must be thin; its color must be white. The peel or skin must be thin, smooth, easily detached and of very light color. The inside of the root must be low in coloring matter and when pulped must be easily washed; when dried it must remain white, with no extraneous coloring; it must yield flour or starch of pure-white color.

In no one variety of cassava do we find together all these characteristics. But we believe that by selection and breeding there can

652 THE JOURNAL OF AGRICULTURE OF THE UNIVERSITY OF P. R.

be obtained a type that will be much nearer the ideal than the presently known varieties of cassava.

The ratio of length of root to diameter must be small as a relatively short and thick root is easier to handle in the plant than a long and light root.

We are giving here some of the characteristics of some of the varieties studied, grouped according to color, type and thickness of the skin, underskin, rind and pulp.

I. Varieties with White under-skin.

1. Mameya, S. A.

The skin is thin and rough of dark brown color, underskin white. The rind is medium thick. The pulp is white.

2. Ceiba, San Antonio.

The skin is very thin and rather smooth; and of brown color. Underskin is white. The rind is thin. Pulp is yellowish-white.

3. Brazil No. 1.

The skin is thick and rough of dark brown color. Underskin is white the rind is medium thick. The pulp is white.

4. Brazil No. 2.

The skin is thick and rough and of dark brown color. Underskin is white. The rind is medium thick. The pulp is white.

5. Aipi Manteiga.

The skin is thin and rough of very dark brown color. Underskin white. The rind is thick. The pulp is white.

6. Tapicurú.

The skin is thick and of dark brown color; underskin is white. The rind is thick. The pulp is white.

7. Negrona Agria.

The skin is thick, rough and dark brown. Underskin is white. The rind is very thick. The pulp is white.

8. Cartagena 2da.

Skin is thick, very rough and dark brown. Underskin is white. The rind is thin. The pulp is white.

9. Cartagena Sto. Domingo.

Skin is thin, smooth and of straw color. Underskin white. The rind is thin. Pulp is white.

INVESTIGATIONS OF THE ROOT OF MANIHOT UTILISSIMA POHL 653

II. Varieties with light-red Underskin.

10. Manuel Pichardo.

The skin is thin and smooth of light straw color. Underskin lightred color. The rind is thick. Pulp is white.

11. Peralta.

The skin is thin and smooth, light straw color. Underskin lightred color. The rind is thick. Pulp is white.

12. Machetazo.

The skin is thin, medium rough and brown. Underskin is lightred color. The rind is thin. Pulp is yellowish.

13. Señora está en la Mesa.

The skin is thick, rough and dark brown. Underskin is lightred color. The rind is thin. Pulp is white.

14. Dame Más.

The skin is thick, rough and dark brown. Underskin light-red color. The rind is thick. Pulp is white.

15. Mocana 677.

The skin is thick, smooth and dark brown. Underskin is lightred color. The rind is thin. The pulp is white.

16. Negrona Chiquita.

The skin is thick, medium smooth and dark brown. Underskin is light-red color. The rind is thick. The pulp is white.

17. New Orleans.

The skin is very thin, smooth, and of light straw color. Underskin is light-red color. The rind is thin. The pulp is white.

18. Cristalina.

The skin is very thin, very smooth and of light straw color. The underskin is light-red color. The rind is thin. The pulp is white.

19. Puerto Plata.

The skin is thin, smooth and of light straw color. The underskin is light-red color. The rind is of medium thickness. The pulp is white.

III. Varieties having Red Underskin.

20. Miracielo.

The skin is thick, rough and of dark brown color. The underskin is red in color. The rind is thin. The pulp is white.

21. Valencia.

The skin is thick, rough and of very dark brown color; underskin red in color. The rind is thick. The pulp is white.

654 THE JOURNAL OF AGRICULTURE OF THE UNIVERSITY OF P. R.

22. Aipi Mangi.

The skin is thick, rough and of dark brown color. The underskin is red in color. The rind is thin. The pulp is white.

23. Goyo Vega.

The skin is thick, rough and dark brown color. The underskin is red in color. The rind is thick. The pulp is white.

24. Negrona Grande.

The skin is thick, rough and dark brown color. The underskin is red in color. The rind is thick. The pulp is white.

25. Carlos Checo.

The skin is thick, rough and dark brown in color. Underskin is red in color. The rind is thick. The pulp is white.

The results given in this preliminary paper are not final nor complete. Much more work has to be done yet to have the complete chemical and industrial data on the root of the cassava. From the data gathered, however incomplete, certain conclusions can be derived, especially those referring to moisture content and to hydrocyanic acid content. It appears that the water content of the root decreases with its age; obeying the same variation as the hydrocyanic acid content. These variations in general are not of the same degree for different varieties.

BIBLIOGRAPHY

1. Scott-Standard Methods of Chemical Analysis.

2. de Gody-Estudio Agricola Industrial da Mandioca. Piracicaba 1921.

3. A Markus-Maniok, Manihot Utilissima, Pohl. Der Tropenpflanzer-No. 4, 1935. p. 144.