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Abstract 
Number sense refers to a collection of skills that play a central role in mathematics 
education at all school levels. Its study has centered mostly on numerical issues related 
to primary school, while there is no consensus about its importance in mathematics 
education beyond middle school. Our hypothesis is that the study of number sense must 
include much more than numbers, their relations and operations, and that it is essential 
for students to be fully prepared to undertake mathematics courses at the university level. 
Students must develop, at school level, robust mental models for the various nuances of 
“number”, such as: magnitudes, number systems, estimation and measurement 
processes, as well as the algebraic, variational and probabilistic dimensions of number. 
We propose a taxonomy for the models useful in developing number sense, and suggest 
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ideas on how teachers can use it to translate those models into mental structures to help 
students build the basis for the study of mathematics in higher education. 

Keywords: number sense, real numbers, dimensions of number sense, numbers 

Resumen 
El sentido numérico se refiere a una colección de habilidades que desempeñan un papel 
central en la educación matemática en todos los niveles escolares. Su estudio se ha 
centrado principalmente en cuestiones numéricas relacionadas con la escuela primaria, y 
no hay consenso sobre su importancia en la educación matemática más allá de la escuela 
intermedia. Nuestra hipótesis afirma que el sentido numérico debe incluir mucho más que 
números, sus relaciones y operaciones, y que es esencial para que los estudiantes estén 
completamente preparados para emprender cursos de matemáticas a nivel universitario. 
Los alumnos deben desarrollar, a nivel escolar, modelos mentales robustos para las 
diversas acepciones de “número”, tales como: las magnitudes, los sistemas numéricos, 
los procesos de medición y estimación, y las dimensiones algebraicas, variacionales y 
probabilísticas del número. Proponemos una taxonomía de los modelos útiles para 
desarrollar el sentido numérico y sugerimos ideas sobre cómo los maestros pueden usarla 
para traducir dichos modelos en estructuras mentales que ayuden a los estudiantes a 
construir la base para el estudio de las matemáticas en educación superior. 

Palabras clave: sentido numérico, pensamiento numérico, numeración, didáctica de los 
números 

Sandow: Ramanju, they all call you a genius. 
Ramanujan: What! Me a genius! Look at my elbow, it will tell you the story. 

Sandow: What is all this Ramanju? Why is it so rough and black? 
Ramanujan: My elbow has become rough and black in making a genius of me! 

Night and day I do my calculation on slate. It is too slow to look for a rag to 
wipe it out with. I wipe out the slate almost every few minutes with my elbow. 

Ramanujan – The Man and the Mathematician (pp. 25-26). 

Antecedents 
In February 1989, the National Science Foundation sponsored a conference, convened in 
San Diego, California, with the purpose of establishing the foundations for research on 
number sense and related topics. The discussions were focused on the following 
questions: 

• What is number sense? How do we assess it? How do we teach it? How is it linked 
to mental computation and computational estimation? 

• What research questions regarding these issues need to be addressed? What are 
the theoretical foundations for this research? How does research in other areas 
of mathematics learning relate to this agenda and to the foundations for this 
research? 
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Participants, mostly researchers from psychology and mathematics education, were 
unable to completely resolve either of these issues. However, the conference proceedings 
contain valuable comments and articles that shed light on the questions raised. The first 
four papers were written by psychologists; the rest were authored by mathematics 
educators whose primary research during the previous decade was related to number 
sense (mainly on estimation and mental computation). The latter group had a “larger 
stake in the conference” since they were seeking theoretical models that would “help 
prioritize research questions and guide them in designing studies” (Sowder & Schapelle, 
1989, p. 3). 

The interactions of the two groups of participants in the conference revealed a tension 
between the mathematics education researchers, who believe that number sense could be 
studied using their fields’ customary research methods, and the psychologists, who insist 
that a new “multiple dimensional perspective” was needed for that purpose, such as the 
one used to investigate intelligence (Resnick, 1989). In other words, the usual methods 
used in mathematics education research were claimed to be inadequate for the study of 
number sense, which is more concerned with the acquisition of “pieces” of mathematical 
knowledge rather than with the development of links between those pieces of knowledge 
(Marshall, 1989, p. 2). The call of number sense and estimation researchers for theoretical 
frameworks to their research ended in disappointment, and this fact was expressly stated 
in some of the papers submitted for the proceedings. Among the voiced regrets was the 
inadequate attention the conference gave to the topics of estimation and mental 
computation, as the discussion consistently drifted towards number sense as a conceptual 
construct, and away from the topics of central interest for research in mathematics 
education. 

That same year, the Mathematical Association of America (MAA) established a 
subcommittee on Quantitative Literacy with the purpose of establishing, among other 
things, how university students can use mathematics in the solution of problems related 
to their field of study. This was the starting point for a series of activities aimed at defining 
the “quantitative literacy” construct and specifying the contents and processes to be 
studied in universities, as well as the competences students should obtain, and how to 
evaluate them. In 2001 the National Council on Education and the Disciplines (NCED) 
sponsored a national forum held at the National Academy of Sciences in order to answer 
the question: Why quantitative literacy matters in schools and universities? 

Steen (2001) was one of the pioneers in trying to determine the quantitative and 
mathematical requirements a person should have for contemporary work and responsible 
citizenship. He defined quantitative literacy as the combination of arithmetic with the 
complex logical reasoning used to solve the issues that modern society faces (Steen, 
2004). He suggested the contents of arithmetic, statistics, modeling and probability as 
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fundamental, that together, with reasoning, data analysis and computer use would be 
fundamental for the training of the responsible citizens. 

While the MAA dealt with the theoretical and curricular aspects of quantitative literacy, 
the Organization for Economic Co-operation and Development (OECD) was engaged in 
its assessment. To develop its test battery for the Programme for International Student 
Assessment (PISA), it defined quantitative literacy as “an individual’s capacity to 
formulate, employ and interpret mathematics in a variety of contexts. It includes 
reasoning mathematically and using mathematical concepts, procedures, facts and tools 
to describe, explain and predict phenomena. It assists individuals to recognize the role 
that mathematics plays in the world and to make the well-founded judgments and 
decisions needed by constructive, engaged and reflective citizens” (OECD, 2012, p. 4). The 
OECD indicates quantitative literacy consists of four phenomenological categories: 
quantity, space and form, relationships, and uncertainty (OECD, 2012). 

De Lange (2003) emphasizes the importance of the phenomenological categories 
identified by the OECD as constituents of quantitative literacy. He also indicates that 
mathematical concepts must be learned through problem solving in appropriate 
environments and with opportunities for progressive mathematization and 
generalization. In addition, he proposes that the longitudinal development of 
mathematical concepts should be designed in a coherent sequence ranging from the most 
elementary grades to the first university years. 

Recent literature has evidenced a progressively increasing interest in constructs like 
“number sense” or “quantitative literacy,” which have been promoted by the central 
professional organizations of mathematics education in the United States, such as the 
National Council of Teachers of Mathematics (NCTM), in the case of number sense, and 
the MAA, in the case of quantitative reasoning. These constructs have certainly evolved 
over time, and they try to capture the ability of students to reason qualitatively in non-
algorithmic mathematical situations related to number and magnitude. It is believed that 
the appropriate measurement of these constructs will be useful in assessing mathematical 
progress of students of all educational levels. This paper capitalizes on a long-standing 
tradition of research in Realistic Mathematics Education and addresses completely the 
unanswered concerns of the San Diego conference by proposing an all-encompassing 
taxonomy on which to base an effective protocol for mathematics education research in 
number sense. 

Our research interests 
The research that focused our attention towards the need to develop a taxonomy for 
number sense originated from an effort to situate entering students to the College of 
Natural Sciences at the University of Puerto Rico, Río Piedras (UPRRP), in terms of their 
number sense skills. It was desired to correlate these skills with students’ performance in 
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the pre-calculus course (an entry level mathematics course taken by more than 90% of all 
undergraduates entering the college), and investigate their ability to read and understand 
mathematics. It should be mentioned that pre-calculus consistently shows high levels of 

attrition1, in spite of the fact that these entering students are the most able and 
mathematically proficient in the whole University of Puerto Rico system, being second 
only to a few entering undergraduates admitted to some extremely competitive academic 

programs, such as architecture, mechanical engineering, psychology, and veterinary2. 

Mathematics professors generally regard students’ inability to cope with the pre-calculus 
course to their lack of mathematical understanding and the accompanying absence of 
appropriation of the progressively complex patterns of reasoning that characterizes the 
acquisition of higher order thinking skills in mathematics. In studying the materials of 
the course, students naturally need to master a significant collection of appropriated 
knowledge from which they can draw and build on. Otherwise, the study of mathematics 
would be a never-ending collection of details. With this in mind, we developed a test with 
the participation of faculty members from the College of Education and the Mathematics 
Department of the College of Natural Sciences. The test, administered to a sample of all 
pre-calculus students, consisted of two parts. The first one was a survey intended to 
gather participants’ socioeconomic information, level of education of their parents, facts 
relating to their home environment, whether they were first generation college students, 
the availability of Internet and computing resources at home (such as graphic calculators, 
computers), among others. The second part and main body of the test consisted of 20 
multiple choice questions to determine to what extent certain knowledge, basic for the 
pre-calculus course, was or not appropriated by the entering students, and whether they 
had the resources to decide the validity of certain mathematical statements without 
having to resort to first principles. It is important to mention that we did not find 
significant differences in the performance of students from the different groups identified 
by the test’s demographic and socioeconomic questions. 

  

                                                        

1 Attrition refers to the percentage of students who get grades of “D” or “F”, or abandon the course 
(officially or otherwise). For pre-calculus the average attrition during the last three years has been 65 
percent. 
2 The average IGS for the different departments of the College of Natural Sciences is 324. The IGS for 
Architecture, Mechanical Engineering, Psychology, and Veterinary are 330, 335, 333, and 325 
respectively. 
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We present samples of some of the reagents used and the statistics of the students’ 
responses. 

Problem 1. 

If 𝑥 and 𝑦 are positive real numbers and 0 < 𝑦 < 𝑥, 
then: 

a. %
&
> %

(
 

b. %
&
< %
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c. %
&
< − %

(
 

d. %
%*+,

< %
%*+-

 

Statistics Problem 1 
a 65 41% 
b 71 45% 
c 9 6% 
d 5 3% 
N/A 9 6% 
N 159  

Problem 2. 

Suppose that &
%.
= 0.

(
= %

1
. Which of the following 

statements is false? 

a. 0.&
%.(

= %
1
 

b. 0.*&
%.*(

= %
1
 

c. &20.
%.2(

= %
1
 

d. 3&*0.
(*04

= %
1
 

Statistics Problem 2 
a 26 16% 
b 17 11% 
c 31 19% 
d 58 36% 
N/A 27 17% 
N 159  

Problem 3. 

If 𝜇 = %
0
, which of the following alternatives is false? 

a. 𝜇 = 0.333… 
b. 𝜇 = 0.666…− 0.333… 
c. 𝜇 = 0.32999 … 
d. 𝜇 = 33 %

0
% 

Statistics Problem 2 
a 25 16% 
b 21 13% 
c 55 35% 
d 35 22% 
N/A 23 14% 
N 159  

The correct answers (b, a, and c) were selected by 45%, 16% and 35% of the students, 
respectively. In the first problem the intention was to assess the idea of variational 
change of expressions as a function of the variation of their constituent variables. 
Trigueros and Jacobs (2008) indicate that “high school and beginning college students 
can work with correspondence between numbers, but the idea of variation is not easy for 
them” and report studies that show the difficulties of students to determine variation 
intervals or to think in dynamic ways, elements that are fundamental for the 
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understanding of functions (p. 6). We feel that if students are not able to detect how 
certain changes in the denominator of a fraction affects its value, they will have 
difficulties understanding more complex variational relations. 

The second problem assesses, in an algebraic setting, elements of proportional thinking 
as an abstraction of properties studied in proportion tables. It is important to indicate 
that this item should be seen as an outcome stemming from the process of verticalization 
in the learning of mathematics in connection, for instance, to the discussion of proportion 
tables. 

The third problem assesses students’ understanding on fraction, percentage and decimal 
formalism in expressing rational numbers. We consider that students entering university 
mathematics courses should have a fair understanding of these topics. Students’ low 
levels of performance worried the authors of this paper. 

Reflections and lessons learned 
Eventually our research was diversified so as to include studies about the development of 
number sense in other populations, notably high school students and preservice teachers. 
As we examined the results we were not satisfied with the theoretical framework 
presented in the literature to describe and predict number sense. We embarked in a 
detailed analysis of possible criteria to guide research and design tests to measure number 
sense. 

Indeed, a recurring criticism for research related to number sense pertains the way it links 
the topic to some structural features of our Hindu-Arabic decimal number system. But, 
we considered that it must include other aspects such as graphs and functions, since the 
latter were invented to offer numerical relations in an efficient and succinct way. There 
is number sense, certainly, in using graphs for discussing how much advantage should a 
Cheetah give to a Thompson gazelle in order to still be able to overtake it, provided we 
have an idea of the graphs presenting the distance traversed by each animal as a function 
of time (Figure 1). 

 

Figure 1 
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The graph suggests a qualitative argument that is, at best, approximate, but yet a very 
powerful and realistic one since the data can be (and has been) gathered by means of 
portable radars and recorded film data. From the graphs it can be inferred that an initial 
acceleration (an impressive one for the Cheetah), a peak velocity for both animals (again, 
very impressive for the Cheetah, the fastest animal on Earth) and, finally, a position of 
rest or rather a very slow movement, after the animals have used a significant part of their 
energy reserves and their pulmonary capacity for replenishing muscles with oxygen, as 
they cannot cope with the expenditure of energy. 

Similarly, there are plenty of objectively identifiable elements of number sense as we look 
at the following climatology graphs of temperature and precipitation of two cities, A and 
S, and deduce, by means of the graphs, which of them is more likely to contain penguins 
(Figure 2). 

 

 

Figure 2 

As a final example of the role in number sense arguments in functional contexts, let’s just 
think of the situation in which a big building whose offices provide services that are pretty 
much independent of age, race or creed, is vacated, and all women in the building are 
gathered outside. We certainly would be very surprised if all of the vacated persons were 
to be of a height that is, say, between four feet six inches to five feet. That is just 
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inconsistent with our expectation of the distribution of heights of the people in the 
building! We would expect a distribution more like a bell curve like the one depicted in 
Figure 3. 

 

Figure 3. Courtesy Asking About Life, by Jennie Dusheck (reproduced with permission). 

This is a consequence of the Central Limit Theorem, which happens to be a very deep and 
fundamental principle of mathematics. Hence, this is another instance of functional 
number sense. It is also an example that documents the need for a broader and more 
encompassing theoretical framework to guide research in this topic. 

As we worked with number sense research, we have also been examining Hans 
Freudenthal’s theory of Realistic Mathematics Education (RME). In his theory, we 
recognized the possibility of developing a comprehensive mathematical model for this 
subject. Our proposal for a theoretical framework for research in this area is based on the 
ideas and models of RME, and an elaboration of the concept of number sense. The notions 
that support our approach were originally due to Freudenthal’s genius through the 
concept of the phenomenology of mathematical structures and his principle of guided 
reinvention. In the following section we summarize this theory, and then explain how it 
helps to develop an all-encompassing mathematical model for number sense. 

Proposal for a theoretical framework for number sense research 
Realistic Mathematics Education (RME) assumes that the study of the history of 
mathematics reveals the ways the human mind comes to organize, understand and 
harmonize mathematical ideas. In the words of Freudenthal (1983),  

Our mathematical concepts, structures, ideas have been invented as 
tools to organize the phenomena of the physical, social and mental 
world. Phenomenology of a mathematical concept, structure or idea 
means describing it in its relation to the phenomena for which it was 
created, and to which it has been extended in the learning process of 
mankind…” (p. ix) 

According to him, phenomenologies can be historical, when the description of their 
mathematical structures is accomplished subordinated to their historical development; 
didactical, as far as they describe the learning process of the young generation, and 
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constitute a way to show teachers “the places where the learner might step into the 
learning process of mankind”; and genetic, if the description is with regard to the 
cognitive processes of mental growth (Freudenthal, 1983, p. 10). As can be expected, the 
history of mathematics plays a central role in the didactical phenomenology of 
mathematical structures to the extent that they serve the important purpose of providing 
an initial proposal for teaching the different areas of mathematics. Freudenthal himself 
worked out the details of the phenomenology of many mathematical structures, such as 
fractions, ratio and proportionality, geometrical structures, and several others 
(Freudenthal, 1983). He also discussed contexts appropriate for the development of the 
corresponding didactical phenomenology of these areas.  

The didactical phenomenology of a given mathematical structure comes coupled with 
several didactical principles, the most notable one being Freudenthal’s guided reinvention 
principle. The principle states, succinctly, that learning mathematics is no more and no 
less than reinventing mathematics under the guidance of a teacher. But he explains that 
what is to be learned is actually much more specific than just “mathematics”, in his words: 
“…the learner should reinvent mathematizing rather than mathematics; abstracting rather 
than abstractions; schematizing rather than schemes; formalizing rather than formulas; 
algorithmizing rather than algorithms; verbalizing rather than language…” (Freudenthal, 
1991, p. 49). The didactical phenomenology of mathematical structures gets coupled with 
the reinvention principle in the instructional design theory known as RME. 

Cobb (2000) states that in RME: 1) the instructional source materials should be 
‘experientially real’ and taken from the student’s immediate context (hence the name 
“realistic mathematics education”); 2) starting points of the instructional source 
materials should be justifiable in terms of the potential ending points (in subordination 
to the phenomenology associated to the corresponding mathematical structures); and 3) 
the instructional source materials should contain activities in which students, guided by 
their teachers, create and elaborate symbolic models of their informal activity (in 
compliance with the guided reinvention principle). Furthermore, the models of 
contextual situations expected to be designed by the students are sometimes called 
“descriptive models”, and the codification or organization of its mathematical content is 
referred to as “horizontal mathematization”. 

According to Van den Heuvel-Panhuizen (2000), it was Streefland who, in 1985, detected 
the shift in models as a crucial mechanism in the growth of understanding. Finally, the 
descriptive models the student constructed (with the teacher’s assistance), abstracted and 
voided of some contextual details, gained an existence of their own and turned into 
“prospective models”. This is the process of “vertical mathematization” discussed by 
Freudenthal in several of his writings (for example, Freudenthal, 1991, p. 30) accounting 
for the elevation of abstraction levels in learning mathematics (Gravemeijer, 1994a; 
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Streefland, 1991; Treffers, 1991a). The interplay of the models and the process of 
verticalization is discussed in Gravemeijer (1994a, 1994b). 

The verticalization phase of Freudenthal’s model of learning encompasses an element of 
the idea of number sense, and that is the student’s appropriation of the elements of 
content and structure that allows for “seeing the forest and not only the trees”. Students 
who succeed in the study of mathematics must be able to develop a certain “numerical 
sense” that allows them to identify component arguments in proofs and refutations, and 
to read and write mathematics efficiently. 

Students develop some sort of “numeric sense” that helps them understand and integrate 
coherently mathematical knowledge (Marshall, 1989, 40). This “number sense” makes 
them more efficient in reading and writing mathematical arguments, and, most 
importantly, allows them to reason qualitatively in the appropriate contexts, obviating 
long chains of detailed argumentation that become, in some sense, automatic, that is: 
become part of their mathematical “common sense”. 

This is, really, a particular instance of a more general principle described by Freudenthal 
(1991): 

Through reflecting on his own activity man discovers paradigms, which 
are abstracted into patterns of mental action, and made conscious as 
schemes by which thought is organized on behalf of new progress — 
daptable schemes, that is, which allow for varieties of use, as well as, in 
the same right, rigid single-purpose schemes which, thanks to their 
rigidity, can lead a life of their own, called algorithms. (p. 10) 

Somehow, as students, we must be able to increasingly see the forest and not just the 
branches of the mathematical tree. Students must move from the stages in which they 
read mathematics and study it with meticulous attention to detail, to the point of being 
able to integrate their knowledge into more encompassing bodies of connections and 
interrelations. As teachers, we are painfully aware that students who fail to develop the 
skills needed to subsume, compress and recognize some chains of reasoning that abound 
in the mathematics literature put themselves at a great disadvantage in keeping up with 
the expected pace and escalate the higher levels of mathematical knowledge expected of 
them. Certainly, for expediency only, if nothing else, students are expected to develop 
this skill in order to study efficiently and in a timely fashion, responsive to the pace of 
classroom discussions. 

An example may be illustrative here. In an introductory analysis textbook, it is stated that 
if a sequence converges to a non-zero real number, then, for sufficiently large values of 
the sequence index, it must happen that the corresponding terms of the sequence are all 
distinct from zero; in symbols, if the sequence (𝑆?)? of real numbers converges to the real 
number 𝑠 ≠ 0, then for some index 𝑛D it must happen that 𝑠? ≠ 0 holds for all 𝑛 ≥ 𝑛D. The 
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argument given in the textbook presents a series of estimations with attention, of course, 

to the indices involved. The argumentation, first, states that for sufficiently large3 values 

of 𝑛, we must have F|𝑠?| − |𝑠|F ≤ |𝑠? − 𝑠| <
|I|
3

, and this is just a standard property of 

absolute values combined with the definition of convergence and capitalizing on the fact 
that |𝑠| is a positive quantity, according to hypotheses. In particular, this states that for 

sufficiently large values of 𝑛, F|𝑠?| − |𝑠|F <
|I|
3

, that is to say, for all sufficiently large values 

of 𝑛, |I|
3
= |𝑠| − |I|

3
< |𝑠?| < |𝑠| + |I|

3
= 0

3
|𝑠|, and, in particular, |𝑠?| >

|I|
3
> 0 for such values 

of 𝑛. 

This is an example of an argument that presents significant difficulties to neophytes in 
the study of analysis, but which is very simple for students who have developed a certain 
degree of number sense related to the metric structure of the real number line, that is, the 
model of the real numbers which is embodied in the usual and ever-present number line. 
In fact, indices apart, all that is being said is that, given two real numbers 𝑦 and 𝑐, with 𝑐 
positive, if the distance from 𝑦 to 𝑐 is smaller than L

3
 then y must lie in the interval 

M𝑐 − L
3
, 𝑐 + L

3
O = ML

3
, 0L
3
O; see Figure 4. 

 

Figure 4 

Of course, stated this way, it is evident that 𝑦 > 𝑐 − L
3
= L

3
. Taking 𝑦 = |𝑠?| and 𝑐 = |𝑠| the 

result is obvious after some qualification regarding the index 𝑛. Of course, the student 
who resorts to the geometry of the number line in order to understand the argument, not 
only shows an attainment of a higher level of number sense than the student who must 
work out the tedious details of the inequalities presented in the textbook. In general, the 
number line is an invaluable tool in thinking about inequalities on the real line as well as 
the algebraic properties of the real numbers. 

A taxonomy for number sense 
Several researchers have remarked on the different ways to interpret the idea of “number” 
(Freudenthal, 1983; Kieren, 1980; Tall, 1991). Students are able to reconstruct the 

                                                        

3 That is, for a “tail end” of the index set, that is, for a set of the form {𝑛|𝑛 ≥ 𝑛D}, where 𝑛D is a suitably 
chosen index. The set of indices of a sequence is, in general, a (so called) terminal segment of integers 
(that is, a set of integers consisting of a first one and all others greater than it) but typically, this set is 
chosen to be the set of non-negative integers. 



Hernández-Rodríguez, O., López-Fernández, J. M., Quintero-Rivera, A. H., & 
Velázquez-Estrella, A. (2019). A taxonomy for models used in developing number 

sense. Revista de Educación de Puerto Rico, 2(2), 1-24. 

R | EDUCA: Revista de Educación de Puerto Rico (2019)        p. 13 

meanings associated with the different facets of number with the guidance of their 
teachers, who make use of models to aid in accomplishing the task. RME has been 
especially effective in the production of didactical models to aid the construction and 
reconstruction of the notion of number. 

Our proposal for number sense research (relating to themes, methodologies and 
theoretical framework) is intimately related to RME and capitalizes on its practical 
implementation. We propose a taxonomy of all models of RME to identify, within each of 
them, the elements of verticalization and automatization that get to be incorporated into 
the mental structures we would identify as part of the “number sense” developed by 
students. We hasten to add that the “number sense” we have mentioned several times in 
this writing, and also gets mentioned repeatedly in other places, like Sowder and 
Schappelle (1989), does not necessarily refer to an innate or given ability to reason 
numerically. Granted, some individuals can have special numerical skills not linked, 
perhaps, to formal mathematical studies, but the goal of number sense research should 
be, in our view, that of seeking the ways in which the teaching of mathematics helps 
develop and automatize this set of skills in all students. It should be emphasized that we 
use the term “automatization” to refer to the process of appropriation of knowledge, that 
is, the incorporation of new knowledge to the student’s cognitive resources, adding thus 
more fluidity and ease to the mental processes associated with mathematics learning. 

The quote of Srinivasa Ramanujan’s interview at the beginning of this writing illustrates 
the point. Ramanujan, a mathematician whose opus required in excess of a century to 
come to grips with it, was known for his powerful computational. For Ramanujan and 
other mathematicians like Archimedes, Euler, or Newton, mathematical computation and 
estimation came more naturally than it came to others; but far from being a part of some 
native number sense, it seems to have been nurtured and significantly improved with 
study and practice. An important tenet in our proposal is that it’s possible to identify, in 
the multiplicity of models used in RME, those elements whose automatization through 
the process of vertical mathematization eventually come to constitute the elements of 
number sense. So, our program for number sense is clear: it behooves us to identify the 
elements of number sense in each of the RME models, and define the corresponding 
methodologies amenable for research pursuant on their study. Furthermore, the proposed 
taxonomy has some peculiar advantages inasmuch as it provides an alternative 
description of mathematics education in terms of the skills expected of students by grade 
and number sense attainment. This fact offers the possibility of thinking of the 
curriculum and expectations by grade in terms of the number sense goals of mathematics 
education. Certainly, an added benefit for teachers in adopting the suggested point of 
view is that it provides an alternative way to conceive their mission goals as teachers in 
terms of the development of number sense, thus guiding teachers away from those 
sometimes sterile and useless definitions of curriculum as themes and subthemes for 
discussion. 
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Our proposal for a taxonomic classification of the models of the didactics of mathematics 
follows the tenets of RME and is consistent with Freudenthal’s ideas regarding the role of 
the history of mathematics in proposing didactical phenomenology for the study of 
mathematics. We propose that in scrutinizing the descriptive and prospective models of 
RME that lead (through the processes of horizontal and vertical mathematization) to the 
central models of mathematics, we find a plethora of questions pursuant to explanations 
of the verticalization that occurs and the implied automatization of the number and 
quantitative facts, patterns and relations that constitute what we call “number sense”. In 
what follows we present a taxonomy that will serve as a guide to cover, hopefully, all of 
the known dimensions of number sense. We present the all-encompassing mathematical 
model together with the descriptive and prospective models gotten through student 
contextual modeling and verticalization. 

T1. Taxonomic entry: The algebraic dimension of number sense 
There are many descriptive models associated to didactic sequences that progressively 
lead to the real number line. The most primitive ones are, perhaps, the two-color 
differentiated bead string (in groups of five or ten) and the “empty” number line (Treffers, 
1991a, pp. 40-42; Gravemeijer, 1994a, p. 120). Both come, in fact, from the counting 
sequence that children bring to school from home and that can end in different numbers 
for different students. 

• The bead line is interesting because it makes students count actual beads, and 
there is a certain intrinsic ambiguity in this sort of counting, since numbers can 
denote both spaces (beads) or markings on the string (points). It is a precursor of 
the empty number line, and this one is a primitive version for the number line 
used to represent faithfully the ordering of numbers and the assignment of a 
unique number to each point of that line (coordinate). 

• The empty number line is devoid of any notion of “distance” and thus, is very far 
from being a “ruler.” On the other hand, as a model, it has rich algebraic 
possibilities in as much as numbers can be viewed as operators. The empty 
number line is a descriptive model useful in implementing special counting 
strategies, often represented by “jumps” of one, five or ten. Van den Heuvel-
Panhuizen (2000, pp. 5-7) discusses what she calls the “level principle,” and 
shows evolutionary stages from the color differentiated bead string to empty 
number lines. 

These two models lead to other prospective ones, like double lines and tables of 
proportions, which these are essential ingredients, as we shall see, for configuring the 
“metric number” line. 

There are other descriptive and prospective models associated with instructional 
sequences and amenable to experimentation activities to reach the automatization of 
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data and processes that comprise what we call “number sense.” The bus context models 
for addition and subtraction of whole numbers is an interesting descriptive model (Van 
den Heuvel-Panhuizen, 2000, p. 26; Gravemeijer, 1994a, p. 35). Also, pairing models to 
determine cardinality (numerosity) without regard to the result of a “final counting” 
strategy is also important in determining what is more and what is less (Gravemeijer, 
1994a, pp. 27-33). Other prospective models related to the transition from “number” to 
“algebra” are related to the study of number patterns, graphs and variational thinking 
(Kindt, Dekker, & Burrill, 2006). 

T2. Taxonomic entry: The metric dimension of number sense 
As indicated in T1 the real number has been seen as evolving from the string of beads 
“line” and the empty number line. It has an important mathematical feature: every point 
in the line corresponds to a unique real number (its coordinate), and all real numbers are 
coordinates of points on the line. Also, the order comparison between coordinates of 
points is consistent with the relative positions of the corresponding points, those lying 
leftmost being the smaller. However, a second property gives this number line its right to 
be called “metric” and that is that the distance between two points corresponds to the 
difference of their coordinates. Of course, the model of the metric line, as opposed to the 
empty number line, incorporates important algebraic and proportional thinking elements 
(Van Galen et al, 2008, pp. 29-33; Van den Heuvel-Panhuizen, 2000). 

• It’s clear that a lot of what we refer to as number sense is intimately linked 
with our Hindu-Arabic number system, based on the amplification or 
contraction of the number line unit by factors of 10 (amplifications) or 
subdivisions obtained by dividing by 10. Empty portions of the metric number 
line can do a lot for the understanding the real line decimal structure. For 
instance, in Figure 5 values for the real numbers 𝐴 and 𝐵 are given, and the 
student is expected to find the number corresponding to 𝐶. For instance, if 
𝐴 = 2 and 𝐵 = 6, then 𝐶 = 9, or if 𝐴 = 0.1 and 𝐵 = 0.3 then 𝐶 = 0.45. The 
amplification/division models of the metric number lines are examples of 
density models and they can contribute significantly to the understanding of 
the rational number system and the nature of irrationalities on the real line. 

 

Figure 5 

• Also, the geometry of the real line accounts for a significant source of 
“proofs” and “refutations” for many properties of the real numbers. For 
instance, the decimal representation of a real number 𝑥 on the unit interval 
of the real line (for convenience we suppose that 𝑥 is not a decimal fraction) 
says something very specific about its placement on the infinitely divisible 
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unit interval of the number line. For example, if the first decimal digit of 𝑥 is 
2, then the number is located in the third interval of the subdivision of the 
unit interval in 10 equal parts. If we proceed with the division of this latter 
interval in 10 homogeneous subintervals and the number were to be located, 
say, on the sixth interval, then the second digit in the decimal expansion must 
be a 5 since we must have 

𝑥 ∈ Y 3
%D
+ 1

%DZ
, 3
%D
+ [

%DZ
O, and so on. 

There is an obvious exception to keep in mind, and that is that the decimal 

fractions have two decimal expressions, one of them infinite4; for instance, 

0.999… = 1											0.25 = 0.24999… 

• Among the descriptive models of mathematics education that get into the 
eventual development of the metric number line are, as mentioned before, 
ratio or proportion tables, and calibrated double number lines. In the 
treatment of fractions, the context of fair division is employed and the above-
mentioned models are used to establish the corresponding relationships 
between fractions, percentages and decimals. Fair division problems were 
solved very early in the history of mathematics as it is recorded in the Rhind 
papyrus. From these ideas we nurture the concept of infinite divisibility and 
tie it up with our decimal notation to get a very accurate idea of the nature of 
rational and irrational numbers. Some of the relevant descriptive models are 
discussed by diverse authors (Van Galen et al., 2008; Van den Heuvel-
Panhuizen, 2000; Van den Heuvel-Panhuizen, 2003). It should be mentioned 
that Freudenthal (1973, pp. 197-210) and Freudenthal (1999, pp. 1-33) work 
out the didactical phenomenology of magnitudes in general and length in 
particular, and all the models mentioned before are consistent with that 
phenomenology. That is to say, they capitalize on models that, through the 
reinvention principle, emulate the mental operations associated with 
measurement, which, succinctly put, are the operations of rational numbers 
on magnitudes (amplification and subdivision of intervals of measurement) 
and the change of gauge (double lines). 

• Floating Point Arithmetic (FPA) used in computing instruments like 
calculators and computers, can be useful descriptive models for 
understanding the metric number line. For instance, in FPA there are 

                                                        

4 This seems obvious and yet, some graduate students in mathematics find great difficulties 
understanding the structure of Cantor sets and their representation as base three decimals (ternary 
expansions) when the very construction of the Cantor ternary set depends on the infinite divisibility by 
three of the unit interval. 
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intervals whose midpoints coincide with one of the extremes of the interval, 
and in FPA there is a nonzero digital number 𝜇 with the property that 
1 + 𝜇 = 1. This weird fact is related to the “machine error”, and every 
computer implementing a FPA system has one. It indicates the computing 
limit of the machine. Students can understand real numbers better if they use 
the calculator as a descriptive model for the metric number line. 

• Also, in Dutch RME textbooks teachers can find concept-integration exercises 
like the following one: 

Given that 034
4
= 81, fill in the second column of the following table: 

2.5 × 324 =  
25%	of	36 =  
3.24 × 0.25 =  
3.24 ÷ 4 =  

324 × 0.0025 =  
36%	of	25 =  
1
4 × 8100 =  

25 × 36 =  
0.0025 × 0.0324 =  

This type of exercise is very useful to apply the properties of the arithmetic 
operations, and to get the desired automatization of procedures relating 
notational representations of fractions, decimal and percentages. 

T3. Taxonomic entry: The variational dimension of number sense 
Tables give rise to the idea of relations between variables, and the relation between 
variables give rise to functional relationships and graphs. This is one of the more 
interesting parts of number sense, and there are a lot of descriptive models in the 
literature. Notable in this respect is, again, the work of the researchers at Freudenthal 
Institute as recorded (Kindt, 2004, 2009; Kindt, et al., 2006). From their work, a reasonable 
working hypothesis that comes up is that students go from patterns to tables, and from 
tables to sequences and functions; also, that inductive sequences are important in 
mastering the notion of function (Kindt, 2004, pp. 23-37, 50-54, and 64-65). Descriptive 
models in the given references include arrow diagrams, algebraic operations flow charts, 
and function machines. Algebra relationships are promoted by applying number line 
models, as well as the relation between plane geometry and algebra. In this taxonomic 
entry we also include models of continuous quantities that allow for qualitative numerical 
reasoning having to do with the existence of certain numbers, for instance, the existence 
of a real number whose square is two, and the existence of two antipodal points on a single 
meridian of the Earth’s surface which have the same temperatures. 
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• Variational number sense includes automatic recognition of the fact that for a 
positive number 𝑎 with 𝑎 < 1, we have 𝑎3 < 𝑎; or that for positive numbers 𝑥 we 
have, 

%
%*&

< %
&
. 

Visual examinations of some algebraic expressions should automatically yield for the 
student information about its growth properties for some values of the variables. 

• Descriptive models for data can include verbal descriptions, tables and graphs. 
Students first make graphs to capture the behavior of variables; conversely, by 
examining specific graphs, they should be able to infer functional relationships 
between the variables. Discussions of continuous processes (in reality, 
applications of the intermediate value theorem for continuous functions) are 
useful as descriptive models for the solution of problems about the existence of 
irrationalities. For instance, in Figure 6 the drafting square moves along the line 
𝑦 = 𝑥 in the first quadrant, getting away from the origin. 

 

Figure 6 

Since the movement is continuous and describes a square of unit area and another 
of area 4, it must also describe a square of area 2 whose side is √2. 

T4. Taxonomic entry: Number sense associated to probability and 
statistics 
Statistics in the lowest grades should include exclusively the study of tables and graphs, 
and the representation of data. It should be remembered that the birth certificate of 
statistics consists of tables of mortality published by John Gaunt in the 17th century to 
impress on the king the possibility of regulating work and production in terms of how 
long people had productive lives. Probability was initially interpreted as observed 
frequencies of certain events and got turned into abstract mathematics by employing 
discrete counting models in some cases, and distributions and densities in others 
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(probabilities that are discrete or have a “continuous part”). Some aspects of the historical 
and didactical phenomenologies of probability and statistics are presented in Freudenthal 
(1973). He remarks that with the availability of functions, it is possible to make significant 
strides in the mathematization of probability. Also, there are obvious elements of 
numerical sense related to the nature of data whose measures of central tendency we 
know because they are given, or by the application of results like the law of large numbers 
or the central limit theorem. In the latter case we offered an example related to the normal 
distribution as a limiting situation of bernoullian probability distributions. 

• Discrete probability starts with prospective models to count efficiently. This 
progresses into situations in which geometrical probability is used to calculate 
frequencies. Finally, the general situation gets described by distribution and 
density models. 

• Estimation and probability are similar to one another with respect to number 
sense, although their mental actions to get probability estimates and estimations 
are quite different. Nevertheless, both categories of number sense address the 
mathematical question where a determinate answer is impossible or, plainly, 
unknown. 

T5. Taxonomic entry: Number sense associated to estimation 
Estimation is seldom a central topic of discussion in the RME literature. Our tenet is that 
it uses the same models as the other taxonomic entries for number sense, except that in 
the context of estimation, determinate models are used but without exact information, 
that is, with approximate information. The only exception to this is, of course, 
probability, which provides estimated answers to contextual situations that do not admit 
definite answers. Granted, this presumably imposes particular research methodologies 
for determining the verticalization attained as such descriptive models turn into 
prospective ones. In this situation, the mathematization of the process of estimation has 
to be sorted out from the vertical mathematization that stems from the original 
deterministic model. An example is presented to illustrate the point. 

• The following is an illustration on a first grade book that intends to engage 
students in a conversation about how to count objects in a toy shop (Figure 7). 
The diagram shows two kids looking at some displays in the store. Students are 
asked, in one case for the number of teddy bears, and in the other for the number 
of toy cars. 



Hernández-Rodríguez, O., López-Fernández, J. M., Quintero-Rivera, A. H., & 
Velázquez-Estrella, A. (2019). A taxonomy for models used in developing number 

sense. Revista de Educación de Puerto Rico, 2(2), 1-24. 

R | EDUCA: Revista de Educación de Puerto Rico (2019)        p. 20 

 

Figure 7. Courtesy Asking About Life (2nd. ed., p. 394), by Allan Tobin & Jennie 
Dusheck. 

For the purposes of counting, we can ask the indicated questions and expect an 
answer under the assumption that what the students cannot see follows the same 
pattern as what in fact they can see. But if we don’t assume this, then the problem 
does not have a uniquely determined answer, and thus it is an estimation problem. 
In counting, the students argued for a pattern that applies to what they don’t see, 
while in the estimation problem they have to think of lower and upper bounds for 
the objects they cannot see. 

Conclusion 
Originally, our interest for embarking on our research on number sense came about as an 
attempt to better comprehend the difficulties students experience in the construction of 
the fundamental notions needed to understand functions and calculus. Our observations 
evidenced the fact that they had shortcomings in grasping algebraic order of the real 
numbers, the density of the rational numbers, and the properties of the usual operations 
in the different numerical systems. Our first approach to this problem was to try to 
measure the number sense skills entering students to the university brought with them 
from high school. Upon revising the pertinent literature, we found that the construct of 
number sense was introduced in the 1980s, and even today the notion can still be better 
defined. Similarly, we found that the corresponding research questions and the associated 
theoretical frameworks were not well established or agreed on. In 1989 the National 
Science Foundation sponsored the Conference on the Foundations for Research on 
Number Sense and Related Topics mentioned before and, as we have seen, the results did 
not improve significantly the state of the research on this subject. As these difficulties 
and subsequent developments confirm, mathematics education research has been unable 
to give satisfactory answers to questions related to what is number sense, how do we 
measure and assess it, how do we teach it at school, how it is linked to mental 
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computation and estimation, and what research frameworks could be regarded as more 
convenient to carry out research on this matter. 

In this work, we propose RME as the appropriate theoretical framework for number sense 
research, coupled with a taxonomy of all descriptive and prospective models of RME, with 
the aim to identify within each of them the elements of verticalization and 
automatization that get to be incorporated into mental structures that we would identify 
as part of what we call number sense. This approach can give a view of the curricular 
contents of mathematics education in terms of the expectations by grade of number sense 
skills attainment. This will give teachers a more realistic and productive view of the 
curriculum. 

RME underscores need to revisit and reflect on the topics in order to accomplish vertical 
mathematization, reaching higher levels of understanding in specific mathematical areas. 
Treffers (1991b, p. 24) refers to this point precisely, and remarks that verticalization 
occurs over long periods of time and revisiting mathematical themes along the different 
stages of education. Apropos of the role of models, this implies that the models of 
mathematics education get progressively verticalized in the process of developing higher 
order levels of understanding and abstraction. Implicit in this verticalization, there are 
automatization elements on features of structural model, as well as of mental processes. 
Such automatization empowers students to add to their knowledge efficiently as they are 
able to muster the automatized resources and use them as basic or given elements in the 
subsequent use of models to describe new mathematical situations. It behooves 
researchers to describe, in more precise terms, the process of verticalization in the 
didactics of mathematics and how this process adds to the appropriation and 
automatization of mathematical knowledge. Our taxonomy could result useful in the 
realization of this work. 

The data collected is limited to students of the pre-calculus course at UPR-Rio Piedras 
Campus; this can be considered a limitation of this study. However, the theoretical 
foundation allows us to ensure that the proposed taxonomy is applicable to all 
educational levels. Even more, we consider imperative the inclusion of the issues of 
numerical sense, as proposed, in the intermediate and higher-level school curricula. 
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