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EPHEMERAL POINT-EVENTS: IS THERE A LAST
REMNANT OF PHYSICAL OBJECTIVITY?®

MASSIMO PAURI* AND MICHELE VALLISNERT

1. Introduction: Einstein, the Hole Argument, and the
physical individuation of point-events

General relativity owes much of its mathematical beauty to its
formulation in terms of the theory of pseudo-Riemannian manifolds.
This beauty, however, carries a curse: at the mathematical level, even a
naked manifold has well-defined points distinguishable 1in terms of
coordinates, but in physics it 1s a widely held assumption that points can
be distinguished only by the values of physical fields or as the positions
of physical objects, including measuring devices. Any attempt to take
the bare points seriously leads to well-known puzzles and quandaries.

Possibly the first puzzle of this kind (the Hole Argument, or
Lochbetrachtung) crossed Albert Einstein’s path repeatedly between
1913 and 1915. These were years of alternating joy and distress for
Einstein, as he set out to create a theory of gravitattion based on the
guiding principle of general covariance, failed to do so, used the Hole
Argument to convince himself that general covariance was physically
inconsistent, formulated the short-lived Einstein—-Grossmann (Entwurf)

® This Essay is dedicated with warm affection to Roberto Torretti on the oc-

casion of his 707/ Birthday. Most of the technical developments that underlay this
work were introduced by Lusanna and Pauri (2002). Some of this material was also
discussed at the international workshop General covariance and the quantum:
where do we stand?, held at the University of Parma on June 21-23, 2001. We are
deeply indebted to Luca Lusanna for a long series of enlightening discussions about
the canonical reduction of general relativity and about the Bergmann-Komar
intrinsic coordinates.

* Dipartimento di Fisica, Universita di Parma, 43100 Parma, Italy.

! Theoretical Astrophysics 130-33, Caltech, Pasadena CA 91125, USA.

263



e — —

264 MASSIMO PAURI AND MICHELE VALLISNERI D79

theory, and finally returned to his original conviction, having come,
through the Hole Argument, to his explanation of the physical meaning
of general covariance. Roberto Torretti wrote a beautiful account of
Einstein’s woes and triumphs i1n his masterly treatise Relativity and
Geometry (Torretti, 1987), and more about this story can be found in
John Norton’s contribution to this very volume, as well as in many other
papers by Norton (1984, 1987, 1988, 1989, 1992, 1993, 2001; see also

Howard and Norton, 1993) and by John Stachel (1980, 1986a,b, 1993,
1999).

Einstein’s “triumph” [to use Norton’s wording (2002)] over the Hole
Argument and “over the space-time coordinate systems” came only
after he adopted a very idealized model of physical measurement where
all possible observations reduce to the intersections of the worldlines of
observers, measuring instruments, and measured physical objects
(point-coincidence argument). In Einstein’s own words (1916):

That the requirement of general covariance, which takes away from space and
time the last remnant of physical objectivity, is a natural one, will be seen from the
following reflexion. All our space-time verifications invariably amount to a
determination of space-time coincidences. If, for example, events consisted
merely in the motion of material points, then ultimately nothing would be
observable but the meetings of two or more of these points. Moreover, the
results of our measurings are nothing but verifications of such meetings of
the material points of our measuring instruments with other material points,
coincidences between the hands of a clock and points on the clock dial, and
observed point-events happening at the same place at the same time. The
introduction of a system of reference serves no other purpose than to
facilitate the description of the totality of such coincidences.

The Hole Argument received new life with John Stachel’s seminal
paper (1980), which raised a rich philosophical debate' that is still alive
today. Soon it became widely recognized that the Hole Argument was
intimately tied with our conceptions of space and time, at least as they

' See Bartels (1994); Belot (1995, 1996); Brighouse (1994); Butterfield (1984, 1987,
1988, 1989); Chuang (1996a,b); Disalle (1994); Earman and Norton (1987); Fine (1984);
Hofer (1996, 1998); Hofer and Cartwright (1993); Leeds (1995); Maudlin (1988, 1990);
Norton (1984, 1987, 1988, 1989, 1992, 1993, 2001, 2002); Rynasiewicz (1992, 1994,
1996a); Saunders (2001); Stein (1977); Teller (1991); Wilson (1993). In this paper we
shall make no attempt to analyze or survey this discussion, not least because we
believe that some debaters occasionally overstep the philosophical latitude allowed

by the very structure of general relativity. Instead, we shall recall only the major
points that can be seen as a premise to our discussion.
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are represented by the mathematical models of general of relativity.

Of course, it is to philosophical preferences that we must defer the
judgment on the ontological status of the notions that are introduced in
physical theories to describe Nature; and this is especially true for the
conditions that decide in favor of a literal or nonliteral interpretation of
theoretical structures. So we shall not be concerned here with the
metaphysical issue of the reality or nature of space-time, let alone of the
Raum of our experience. We agree with Michael Friedman when he
argues that the Hole Argument leaves an unsolved problem about the
characterization of intrinsic space-time structure, rather than an
ontological question about the existence of space-time [“avoiding
quantification over ‘bare’ points ... appears to be a non-trivial
mathematical problem” (Friedman, 1984)].

In this paper we offer our contribution to the clarification of this
non-trivial problem. More precisely, we investigate the relation between
the physical meaning of spatio-temporal localization and the
unavoidable use of arbitrary coordinate systems in the practice of
general relativity. Thus, we explore the limits on the objectivity of space-
time that are imposed by the mathematical representation of spatio-
temporal structure, in conjunction with the requirements of the
empirical foundation of general relativity.

1.1 The Hole Argument

In its modern version, the Hole Argument runs as follows. Consider a
general-relativistic  space-time, as specified by a four-dimensional

mathematical manifold M, and by a metrical tensor field g, which
represents at the same time the chrono-geometrical structure of space-
time and the potential for the gravitational field. The metric g 1s a
solution of the generally-covariant Einstein equations. If any
nongravitational physical fields are present, they are represented by
tensor fields that are also dynamical fields, and that appear as sources in
the Einstein equations.

Now assume that M, contains a hole ¥: that is, an open region where
all the nongravitational fields are null. On M, we can prescribe an active’

? As originally formulated by Einstein (1914), the Hole Argument does not rely
on the effects of active diffeomorphisms in the modern geometrical sense, but rather

on the following procedure. After taking a coordinate transformation = fPE") e
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diffeomorphism D, (Norton, 1987; Stachel, 1993; Wald, 1984) that
remaps the points inside €, but blends smoothly into the identity map

outside # and on the boundary. Because the Einstein equations are
generally covariant, if g i1s one of their solutions, so 1s the drag-along field
g =D g By construction, for any point x€ ¥ we have (geometrically)
2 (D x) = g(x), but of course g'(x) # g(x) (also geometrically).

What 1s the correct interpretation of the new field g'? Clearly, the
transformation entails an acfive redistribution of the melric over the
points of the manifold, so the crucial question is whether, to what extent,
and how the points of the manifold are primarily individuated.’ In the
mathematical literature about topological spaces, it is always implicitly
assumed that the entities of the set can be distinguished and considered
separately (provided the Hausdorff conditions are satisfied), otherwise
one could not even talk about point mappings or homeomorphisms. It

is well known, however, that the points of a homogeneous space cannot
have any intrinsic /ndividuality. As Hermann Weyl (1946) put it:

There 1s no distinguishing objective property by which one could tell apart
one point from all others in 2 homogeneous space: at this level, fixation of a

point is possible only by a demonstrative act as indicated by terms like “this”
and “there.”

Quite aside from the phenomenological stance implicit in Weyl’s
words,' there is only one way to individuate points at the mathematical
level that we are considering: namely by coordinatization, which
transfers the individuality of »-tuples of real numbers to the elements of
the topological set. Therefore, all the relevant transformations (including

obtain the transformed metric §w(ép), and then we consider the object g_(&")

defined by transferring the functional dependence of Eﬂp(é") to the o/d coordinates

x*. This is akin to obtaining an active diffeomorphism as the dwa/ of a passive
transformation.

' Consistently with our program, we shall not get involved in the deep
philosophical issue of the individuation of entities in general. Throughout this essay,
our notion of individuation will be deliberately restricted to the meaning that it can
have at the mathematical level and, above all, within the conceptual context of a
physical theory.

' One could contemplate stripping the argument from its phenomenological
flavor by asserting that, after all, the demonstrative act also establishes an empirical
coincidence. This view is taken, for instance, by Moritz Schlick (1917), who writes: “In
order to fix a point in space, one must somehow directly or indirectly, point to it ...

that is, one establishes a spatio-temporal coincidence of two otherwise [already]
separate clements.”
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active diffeomorphisms) operated on the manifold M ,, even if viewed in
purely geometrical terms, must be constructible in terms of coordinate
transformations (see for instance note 2). So we have necessarily crossed
from the domain of geometry to algebra, and we can justify our use of
the symbol x to denote a point of the manifold, as mathematically
individuated by the chosen coordinates.

Let us go back to the effect of this primary individuation of manifold

points. If we now think of the points of 9 as alteady independently
individuated spatio-temporal physical events even before the metric is
defined, then g and g' must be regarded as physically distinct solutions

of the Einstein equations (after all, g'(x)#g(x) at the same point x). This is
a devastating conclusion for the causality, or better, determinateness of
the theory, because it implies that, even after we completely specify a
physical solution for the gravitational and nongravitational fields outside
the hole (for example, on a Cauchy surface for the initial value problem),
we are still unable to predict uniquely the physical solution within the
hole. Clearly, if general relativity has to make any sense as a physical
theory, there must be a way out of this foundational quandary,
independently of any philosophical consideration.

In the modern understanding, the most widely embraced escape
from the strictures of the Hole Argument (which is essentially an update
to current mathematical terms of the naive solution adopted by
Einstein), is to deny that diffeomorphically  related  mathematical
solutions represent  physically distinct solutions. With this assumption,
an entire equivalence class of diffeomorphically  related mathematical
solutions  represents only onme physical solution.® This statement has
come to be called [after Earman and Norton (1987)] Leibnig equivalence.

It should be clear from the beginning that this is an allusion to a new
Leibnig adapted to the modern context of general relativity. Apart from

 We prefer to avoid the term determinism, because we believe that its
metaphysical flavor tends to overstate the issue at hand. This is especially true if
determinism is taken in opposition to indeterminism, which is not mere absence of
determinism.

¢ Of course, taken at face value this statement could be misinterpreted as the
naive (and physically vacuous) assertion that metric tensors that have different
descriptions in different coordinate systems are geometrically the same tensor
(invariance with respect to passive diffeomorphisms Diff,M,). To formulate the Hole
Argument, however, we have used active diffeomorphisms: although, as said before,
these are generated by the drag-along of coordinate systems, they have the effect that

the metric tensors g and D ¢ become geometrically different at each point x € dat.
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the structural analogy, modern Letibnizian arguments proceed without
any reference to the metaphysical premises of Leibniz’s historical
arguments.’ The same should be said of the Newtonian arguments that
underlie the modern version of swbstantivalism (see more below).
Rynasiewicz (1996b) has properly remarked that, as it is often portrayed
in twentieth-century philosophical literature, even the opposition
between swbstantivalism and relatiomism amounts to a historical
misrepresentation of the classical Newton-Leibniz controversy [see also
Dorato (2000)]. This 1s not irrelevant to the present considerations, for
we find it rather arbitrary to transcribe Newtonian absolutism (or at least
part of it) into the so-called manifold substantivalism, no less than to
assert that general relativity is a relatiomal/ theory in an allegedly
Leibnizian sense. As emphasized by Rynasiewicz, the crucial point is that
the historical debate presupposed a clear-cut distinction between
matter and space, or between content and container; but by now these
distinctions have been blurred by the emergence of the so-called
electromagnetic  view of nature in the late nineteenth century [for a

detailed model-theoretical discussion of this point see also Friedman
(1983)].

Sall, although some might argue [as do Earman and Norton (1987)]
that the metric tensor, gwa physical field, cannot be regarded as the
container of other physical fields, we argue that the metric field has
ontological priority over all other fields. This preeminence has various
reasons (Pauri, 1996), but the most important is that the metric field tells
all other fields how to move causally. We also agree with Friedman (1983)
that, in agreement with the general-relativistic practice of not counting
the gravitational energy induced by the metric as a component of the
total energy, we should regard the manifold, endowed with its metric, as
space-time; and leave the task of representing matter to the stress-
energy tensor. Because of this priority, beside the fact that the Hole /s
pure gravitational field, we maintain, unlike other authors [see for
example Rovelli (1991, 1997, 1999)], that the issue of the individuation of
points of the manifold as physica/ point-events® should be discussed

" More aptly, Fricdman calls this Leibniz, stripped of his metaphysical
assumptions, the Lebniz of the positivists (Friedman, 1983, p. 219; see also Friedman,
2001). A penetrating analysis of the o/d Leibniz versus the mew one can be found in
Earman (1979).

* There is an unfortunate ambiguity in the usage of the term space-time points in
the literature: sometimes it refers to element of the mathematical structure that is the
first layer of the space-time model, sometimes to the points interpreted as physical
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primarily in the context of the vacuum gravitational field, without any
recourse to nongravitational entities, except perhaps at the operational
level. In this paper we shall indeed adopt this choice.

Stachel (1980, 1986a,b, 1993, 1999) has given a very enlightening
analysts of the meaning of general covariance and of its relations with the
Hole Argument, expounding the conceptual consequences of Einstein’s
acceptance of modern Leibniz equivalence through the point-
coincidence argument. Stachel stresses that asserting that g and D g
represent one and the same gravitational field i1s to imply that the
mathematical individuation of the points of the differentiable manifold
by their coordinates has no physical content until a metric ltensor is
specified. In particular, coordinates lose any physical significance
whatsoever (Norton, 2002). Furthermore, as Stachel emphasizes, if ¢ and
D ,¢ must represent the same gravitational field, they cannot be
physically distinguishable in any way. So when we act on g with D, to
create the drag-along field D g0, no element of physical significance can
be left behind: in particular, nothing that could identify a point x of the
manifold as the same point of space-time for both g and D ¢ Instead,

when x is mapped onto x'=D ., it brings over its identity, as specified

by £'(x")=4(x).

This conclusion leads Stachel to the conviction that space-time
points must be physically individuated before space-time itself acquires a
physical bearing, and that the metric plays in fact the role of
individuating field. What is more, in practice even the topology of the
underlying manifold cannot be introduced independently of the specific
form of the metric tensor, a circumstance that makes it even more
implausible to interpret the mere topological manifold as swbstantival
space-time (manifold substantivalism).

Finally, it is essential to note, once again with Stachel, that simply
because a theory has generally covariant equations, it does not follow that
the points of the underlying manifold must lack any kind of physical
individuation. Indeed, what really matters 1s that there can be no
nondynamical individuating field that is specified independently of the
dynamical fields, and in particular independently of the metric. If this
was the case, a re/ative drag-along of the metric with respect to the
(supposedly) individuating field would be physically significant and

events: we will adopt the term point—event in the latter sense and simply point in the
former.
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would generate an inescapable Hole problem. Thus, the absence of any
nondynamical individuating field, as well as of any dynamical
individuating field independent of the metric, 1s the crucial feature of the
purely gravitational solutions of general relativity.

After a brief detour into the main themes of the philosophical
debate on the Hole, we shall come back to Leibniz equivalence and argue
that it bears little relation to the determinateness of general relativity,
and that instead it amounts to the recognition that the mathematical
representation of space-time contains superfluous structure, which must
be 1isolated.

1.2 The philosophical debate on the Hole

The modern swbstantivalist position’ is a statement of spatio-
temporal realism: its adherents claim that the individual points of the
manifold, for a given solution of the Einstein equations, represent
direct/y the physical points of space-time, as they would occur in the
actual or in some possible world.

Of course, as we have already emphasized, if we do assume that the
points possess an individual existence of their own, then the
rearrangement of the metric field against their background, as envisaged
in the Hole Argument, would produce a true change in the physical state
of space-time. For this reason, according to Earman and Norton (1987),
substantivalism can be accused of turning general relativity into an
indeterministic theory: 1if diffeomorphically related metric fields re-
present different physical states, then any prescription of initial data
(outside the hole) would fail to determine a corresponding solution of
Einstein’s equations (inside the hole), because many are equally possible.
Earman and Norton’s intention is to confront the substantivalists with a
dire dilemma: accept indeterminism, or abandon swbstantivalism.

There have been various attempts in the substantivalist camp to
counter this threat of indeterminism. For example, Butterfield (1984,
1987, 1988, 1989) portrays diffeomorphic models as different possible
worlds and invokes counterpart theory to argue that at most one can
represent an actual space-time. Maudlin (1988, 1990) claims that a space-
time can be properly represented by at most one of two diffeo-

’ See Bartels (1994); Butterfield (1984, 1987, 1988, 1989); Disalle (1994); Fine

(1984); Hofer (1996, 1998); Hofer and Cartwright (1993); Maudlin (1988, 1990); Stein
(1977); Teller (1991).
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morphically related solutions of Einstein’s equations, because each
space-time point carries metrical properties essentially, so these
properties are zames in the Kripkean sense of rigid designators: within
a class of diffeomorphic models, only one specimen can represent a
possible world, because a world i1n which a point bears metrical
properties other than the ones it actually bears would be an impossible
world.

Bartels (1994) objects to Maudlin that “with respect to the concrete
spots of the metrical field in our wotld one can reasonably say that their
metrical properties could not be otherwise than they actually are ... But
to say the same with respect to manifold points in a model 1s highly
problematic, because diffeomorphisms obviously generate permissible
models in which the same manifold points bear different metrical
properties.”
diffeomorphic image points of a point p as the representation of one
and the same possible space-time point, because all the diffeomorphic
image points of a certain point p in a model bear the same individuating

Bartels then proposes to take a whole equivalence class of

metrical  fingerprint. Yet, independently of any philosophical
preference, this suggestion is technically not viable; for, lacking any
specific definition of such equivalence classes, it could even happen that
an equivalence class, which is supposed to represent a rea/ point, actually
covers all points of the manifold. It seems therefore that the essentialist
recourse to metrical fingerprints as an escape from the Hole Argument
is doomed to fail, unless it is possible to give a consistent mathematical
definition of metrical fingerprint. Even then, we still believe that it is
necessary to accept Leibniy equivalence, at least as a starting point. At
the end of our analysis, it should be apparent that the specific structure
of the individuating metrical fingerprint leaves no room to sidestep the
Hole Argument with any essentialist interpretation of point-events.

Let us now have a look at Roberto Torrett’s reaction to some of
these positions, and to the Hole Argument in general. In his recent book
The Philosophy of Physics (Torretti, 1999), Torretti argues that “the
[Hole] argument forgets the fact, so clearly set forth by Newton, that
points in a structured manifold have no individuality apart from their
structural relations.” He then quotes Newton’s De Gravitatione (Hall and

Hall, 1962):

Perhaps now it is maybe expected that I should define extension as substance
or accident or else nothing at all. But by no means, for it has its own manner
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of existence which fits neither substance nor accidents [...] Moreover the
immobility of space will be best exemplified by duration. For just as the
parts of duration derive their individuality from their order, so that (for
example) if yesterday could change places with today and become the latter
of the two, it would lose its individuality and would no longer be yesterday,
but today; so the parts of space derive their character from their positions, so
that if any two could change their positions, they would change their
character at the same time and each would be converted numerically into the
other gwa individuals. The parts of duration and space are only understood
to be the same as they really are because of their mutual order and positions
(propter solum ordinem et positiones inter se); nor do they have any other principle of

individuation besides this order and position which consequently cannot be
altered.

Earlier (Torretts, 1987), Torretti had downplayed the issue of the
physical individuation of space-time points, noticing that

[...] the idea that space-time points are what they are only by virtue of the
metric structure to which they belong agrees well with the thesis, common
to Leibniz and Newton, that “it 1s only by their mutual order and position
that the parts of time and space are understood to be the very same which in

truth they are,” for “they do not possess any principle of individuation apart
from this order and these positions.”

Torretti goes on to point out that making this assumption entails very
important consequences: for instance, “it is obviously meaningless to
speak in General Relativity of a space-time point at which the metric is
not defined,” it becomes impossible to hold that “the metric of a
relativistic space-time is not a matter of fact, but of mere convention”
(geometric conventionalism), and serious problems arise for the
“fashionable semantic theory [Kripke’s] that conceives of proper names
as ‘rigid designators’, denoting the same individual in many alternative
diversely structured ‘possible worlds.” Proper names cannot function in

this way if the very individuals which ate their referents owe their
identity to the structure in which they are enmeshed.”

In conclusion, Torretti proposes a more equitable “way of dealing
with Einstein’s [Hole Argument], which does not assume that space-time
points can only be physically distinguished by means of their metric
properties and relations.” To reject the Hole Argument, he argues, it is
enough to note that two physical objects can be distinguished either
empirically (basically, because our direct experience suggest they differ)
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or rationally (“if they are equated to or represented by structurally
unequal conceptual systems”). The two physical situations envisaged in
the Hole Argument are both observationally indistinguishable (in short,
because of the point-coincidence argument) and conceptually
indistinguishable (because structurally 1somorphic): they are

[...] as far as our assumptions go, perfectly indiscernible, and therefore must
be regarded as identical. In the view I have just put forward, the onus of
individuating the points of space-time does not rest with the metric, which is a structural
Jeature of the world. The role of structure is not to individuate, but to speafy; and of course it
cannot perform this role beyond what its own specific identity will permit, that is, “up to
isomorphism.” It 1s only on nonconceptual grounds that two isomorphic
structures can be held to represent two really different things.

In essence, in 1983 Torretti was satisfied with a structuralist view a /4
Newton, conjoined with the modern understanding of Leibnig
equivalence.

However, as Friedman has remarked (1984, p. 663), if we stick to
simple Leibniz equivalence, “how do we describe this physical situation
intrinsically?” What is the meaning of point-events as the local elements
of space-time? We believe that the task of describing the physical
situation Zntrinsically is worth pursuing. To this end, we can take
advantage of the fact the points of general-relativistic space-times, quite
unlike the points of the homogeneous Newtonian space, are endowed
with a remarkably rich non—point-like texture" provided by the metric
field. This texture can be exploited for the purpose of the physical
individuation of points, for it is now the dyramical/ metric field that
characterizes their “mutual order and positions.” Furthermore, as we
shall see, the need to connect the formal structure of the theory to the
empirical requirements of measurements leads necessarily to a

?

refinement of Leibniz equivalence.

Following this line of thought, we shall argue that there is a specific
technical sense in which a procedure of point individuation follows
directly from the Hamiltonian formulation of general relativity as a gauge
theory. In particular, we will show that the individuation of points
originates directly from the effective degrees  of freedom  of the
gravitational  field, which come to play the role of basic metrical

fingerprints.

' More important, as we shall see, the physical/ individuation of points as poini-
events is necessarily monlocal in terms of the manifold points.
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1.3 What is the metrical fingerprint of point-events?

Now, how is it that the metric field can realize concretely its would-
be role of physical individuator? After all, we know very well that only a
subset of the ten components of the metric is physically significant. It
secems then plausible that only this part of the metric might serve as
individuating field, while the remaining components would carty
physically spurious information.

We move from the analysis given by Bergmann and Komar," who
suggest that (in the absence of matter fields) the value of four invariant
scalar fields built from contractions of the Weyl tensor can be used as
intrinsic pseudo-coordinates that are invariant under diffeomorphic
transformations. Stachel (1993) reprises this suggestion, but he does not
pursue it further."”

Our considerations are based on the technical premises laid down by
Lusanna and Pauri (2002) with the purpose of extending and clarifying
the Bergmann—-Komar—Stachel program  within the Hamiltonian
formulation of general relativity as a gauge theory. Three circumstances
make the recourse to the Hamiltonian formalism especially propitious.

1. Itis evident that the Hole Argument is inextricably entangled with
the initial-value problem of general relativity, but, strangely enough,
the Hole Argument has never been explicitly discussed in that
context in a systematic way. Possibly the reason 1s that most
authors have implicitly adopted the Lagrangian approach (the
manifold way), where the initial-value problem 1s intractable
because of the nonhyperbolic nature of Einstein’s equations.”

' See Bergmann (1960, 1962, 1971, 1977); Bergmann and Komar (1960, 1972);
Komar (1955, 1958).

> To our knowledge, Bergmann and Komar did not follow up on their
suggestion, either. The last organic presentation of the issue seems to be Bergmann’s
Handbuch article (Bergmann, 1962, pp. 252-255).

'* Actually, David Hilbert was the first person to discuss the Cauchy problem for
the Einstein equations and to realize its connections to Hole phenomenology
(Hilbert 1917). He discussed the issue in the context of a general-relativistic
generalization of Mie’s special relativistic non-linear electrodynamics, and pointed
out the necessity of fixing a specific geometrically adapted (Gawssian in his term, or
geodesic normal as known today) coordinate system to assure causality of the theory.
In this connection see Howard and Norton (1993). However, as noted by Stachel
(1992), Hilbert’s analysts was incomplete and neglected important related problems.
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2. Only in the Hamiltonian approach can we isolate the gauge
variables, which carry the descriptive arbitrariness of the theory,

from the (Dirac) observables, which are the right candidates to
become the dynamical individuating fields.

3.  Finally, in the context of the Hamiltonian formalism, we can resort
to Bergmann and Komar’s theory of general coordinate-group
symmetries (Bergmann and Komar, 1972) to clarify the significance
of active diffeomorphisms as on-shel/ dynamical symmetries of the
Einstein equations. This step is crucial: to understand fully the role
played by active diffeomorphisms in the Hole Argument, it is
necessary to interpret them as the manifo/d-way counterparts of
suitable Hamiltonian gauge transformations, which are passive' by
definition.

2. Mathematical development: general relativity as a gauge
theory and the physical individuation of point-events

This section provides the technical foundations for our analysis of the
physical individuation of point-events in general relativity. We start off
with a brief, qualitative outline of general relativity as a constrained
Hamiltonian theory (especially for the benefit of the philosophers of
science who have not had the chance of studying it in detail): Sec. 2.1
introduces constrained Hamiltonian theories in general, while Sec. 2.2
specializes to the case of gravity. Sec. 2.3 discusses the relation between
the gauge transformations of the Hamiltonian formalism and the
dynamical symmetries of the Einstein equations. Finally, in Sec. 2.4 we
present the theory of the Komar—Bergmann intrinsic coordinates, and
we explore their link with gauge freedom in general relativity and their
significance for the physical individuation of space-time points.

2.1 The constrained Hamiltonian formalism

As most other fundamental theories in modern physics, general
relativity falls under the chapter of gauge theories. To use the very
general definition given by Henneaux and Teitelboim (1992):

" This passive view of active diffeomorphisms is not equivalent to their dwal
representation by the corresponding passive coordinate transformations [as shm:frn,
for instance, by Wald (1984); see also footnote 2]. By rights, the active
diffeomorphisms should be considered as passive transformations on the function
space of metric fields, rather than on the space-time manifold.
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These are theories in which the physical system being dealt with is described
by more variables than there are physically independent degrees of freedom.
The physically meaningful degrees of freedom then reemerge as being those
invariant under a transformation connecting the variables (gauge
transformation). Thus, one introduces extra variables to make the description
more transparent, and brings in at the same time a gauge symmetry to extract
the physically relevant content.

The mathematical development of gauge theories starts when we
realize that the Lagrangian action principle, SI F(q,q)dt=0, yields

Euler—Lagrange equations that are not hyperbolic, because they cannot
be solved for all the accelerations. Technically, the same condition that

makes it so (the singularity of the Hessian matrix” [aszf/aqkaq'h]) means

also that, when we move from the Lagrangian to the Hamiltonian
formulation, the momenta are not all functionally independent, but
satisfy some conditions known as (primary) constraints. Secondary
constraints arise when we requite that the primary constraints be
preserved through evolution.'” There is no strong distinction between

primary and secondary constraints in the role that they come to play in
the unfolding of constrained dynamics.

The existence of constraints implies that not all the points of phase
space represent physically meaningful states: rather, we are restricted to
the constraint surface where all the constraints are satisfied. The
dimensionality of the constraint surface is given by the number of the
original canonical wvariables, minus the number of functionally
independent constraints.

Generally, the constraints are given as functions of the canonical
variables which vanish on the constraint surface; technically, these

functions are said to be weakly zero' (= 0). Note that weakly vanishing
functions may have nonvanishing derivatives in directions normal to the
constraint surface, so their Poisson brackets with some of the canonical

"> Throughout this section we shall outline the constrained Hamiltonian theory
in the simpler case of a finite number of degrees of freedom. For field theories (such
as general relativity) there are, as always, additional subtleties.

"® Tertiary constraints follow from the conservation of secondary constraints,
and so on. In physically interesting theories this chain ends before we run out of all
the original degrees of freedom.

'" Conversely, any weakly vanishing function is a linear combination of the
weakly vanishing functions that define the constraint surface.
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variables may well be nonzero. If instead all the dertvatives vanish, the
functions are said to be sfromgly zero, and they can be freely inserted in
any Poisson bracket without changing the result.

When wused as generators of canonical transformations, some
constraints, known as first c¢/ass,” will map points on the constraint
surface to points on the same surface; these transformations are known
as gauge ftransformations. Second «c¢lass constraints, on the contrary,
will generate transformations that map allowed physical states (points on
the constraint surface) onto disallowed states (points off the constraint
surface). Since second-class constraints do not show wup in the
Hamiltonian formulation of general relativity, we will disregard them i1n
the rest of this exposition.

To obtain the correct dynamics for the constrained system, we need
to modify the Hamiltonian variational principle to enforce the
constraints; we do this by adding the constraint functions to the
Hamiltonian, after multiplying them by arbitrary functions of time (the
Lagrange—Dirac multipliers). Because the first-class constraints generate
gauge transformations on the constraint surface, different choices of the
Lagrange-Dirac multipliers will generate evolutions of the canonical
variables that differ by gauge transformations. If, with Dirac, we make
the reasonable demand that the evolution of all physical wvariables
should be unique,” then the points of the constraint surface that sit on
the same gauge orbit (that is, that are linked by gauge transformations)
must describe the same physical state. Conversely, only the functions
in phase space that are invariant with respect to gauge transformations
can describe physical quantities.”

To eliminate this ambiguity and create a one-to-one mapping
between points in phase space and physical states, we can impose
further constraints, known as gauge conditions. The gauge conditions
can be defined by arbitrary functions of the variables of the constraint
surface, except that they must define a reduced phase space that

'® A function of the canonical variables is defined to be first ¢/ass if 1its Poisson
brackets with all the constraints are strongly or weakly zero. It is defined to be second
class if its Poisson bracket with at least one constraint is not zero.

' Otherwise we would have to envisage rea/ physical variables that are
indeterminate and therefore not observable, and ultimately not measurable.

2 Of course, in many cases (such as electromagnetism) we know the nbsewa.blﬂ
quantities from the beginning, because we have gauge-independent dynamical
equations for the ficlds (e. g, the Maxwell equations). Then the distinction between
observables and gauge variables that follows from the first-class constraints must

reproduce this situation.
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intersects each gauge orbit exactly once. In other words, given a point
on the constraint surface, there must be a gauge transformation that
takes it into the reduced phase space; conversely, if we apply a gauge
transformation to a point in the reduced phase space, we take it out of
the gauge. Abstractly, reduced phase space 1s the quotient of the
constraint surface by the group of gauge transformations and 1t
represents the space of variation of the true degrees of freedom of the
theory.

The number of independent gauge conditions must be equal to the
number of independent first-class constraints. Because of their role, the
gauge conditions cannot commute (have vanishing Poisson bracket) with
the original first-class constraints; so the set of the first-class constraints,
with the addition of the gauge conditions, becomes a set of second-c/ass
constraints. After this canonical reduction is performed, the theory is
completely determined: each physical state corresponds to one and
only one set of canonical variables that satisfy the constraints and the
gauge conditions. Then we are also able to determine the Lagrange—Dirac

multipliers, so no arbitrary functions of time appear anymore in the
Hamiltonian.

At this stage, we can invoke the Shanmugadhasan transformation
(Shanmugadhasan, 1973) to put the gauge conditions into an especially
meaningful functional form. The Shanmugadhasan transformation has
the effect of reshuffling all the first-class constraints into a set of Abelian
canonical momenta. The surface where these momenta are zero is just
the original constraint surface, and the conjugate canonical variables are
the gauge functions, whose gauge fixing determines the reduced phase
space. The so-called Dirac observables are just a Darboux basis for the
reduced phase space.” Note that the entire procedure of canonical

reduction 1s performed off shel/l, that is, without reference to the actual
solution of the Hamilton equations.

Thus, after reducing twice the dimension of the initial phase space by
the number of independent constraints (once to go to the constraint

? While the Poisson brackets of the Dirac observables with the original
constraints vanished only weak/y, the reduced phase space is equipped with a new

Potsson—-Dirac algebra given by the so-called Dirac brackets (denoted by {-,-}*}, and
the Dirac brackets of the observables with the Abelianized constraints and their
conjugate variables vanish sfromgly. This is precisely the purpose of the
Shanmugadhasan transformation, which creates a true projection from the original
constraint surface to the reduced phase space.
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surface, once again when the gauge conditions are enforced to obtain the
reduced phase space), we are at the end of our long trip. Under the
action of the Hamiltonian, the Dirac observables evolve deterministically
within the reduced phase space, and the indeterminateness of the
nonhyperbolic Euler-Lagrange equations has been converted into the
physically harmless arbitrariness of the gauge fixing.

2.2 General relativity as a constrained Hamiltonian
theory

The standard progression of general-relativity textbooks takes us
through a dense barrage of differential geometry until we have gathered
enough foundations to lay down the vacuum Einstein equations,

1
Ryv—5Rew=0; (1)

2
on this mountaintop we can draw a breath of relief, and contemplate the
beauty of general relativity. These equations can be derived as
Euler-Lagrange equations from the Lagrangian vartation of the
Einstein—Hilbert action

§=[d*x-gR, (2)

where the independent components of the metric field g, serve as
configuration variables. However, the Egs. (1) cannot be solved as they
are written, because they are not hyperbolic: only two equations out of
ten are evolution equations for the “accelerations” of the metric. The
reason is that the action is invariant under general coordinate
transformations (the passive diffeomorphisms Diff, M), so the Hessian
matrix has vanishing determinant (Sundermayer, 1982). From the
Lagrangian point of view, to solve the Egs. (1) we need to remove the
diffeomorphism  invariance by fixing the coordinate system
completely.”

2 In the Lagrangian formalism (manifold way), the counting of degrees of
freedom goes as follows: the ten Einstein equations can be rearranged as four
Lagrangian  constraints (restrictions on the initial Cauchy data), four Bianch:
identities (which vanish identically), and two dynamical second-order equations.
Therefore, of the ten independent components of the metric tensor, two are
deterministic dynamical degrees of freedom, four are bound by the Lagrangian
constraints, and the remaining four are completely indeterminate until the
coordinates are fixed.
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Let us now turn to the Hamiltonian formalism, where the gauge
symmetry of the system 1s fully manifest. Although several variations are
possible, we will outline the standard ADM formalism [named after
Arnowitt, Deser and Misner (1962)]. Before we attempt to solve the
Cauchy problem for the Einstein equations, we need to perform a 3+1

split of space-time: that is, we need to assume that the space-time (M ")
is globally hyperbolic, and that it can be fo/iated by a family of spacelike

Cauchy surfaces 2., indexed by the parameter time T. This means
essentially that we view the global space-time as representing the
(parameter) time development of a three-dimensional Riemannian

metric ’g on a fixed tridimensional manifold ¥_. The three-metric is a
classical field which depends on the three spatial coordinates® 6“ on X,
and evolves with the parameter time T.

To complete the 3+1 split, we need to specify the packing of the

surfaces X, in proper (physical) time, and the physical correspondence
between the points on each surface (loosely, we need to keep track of
which point 1s which as we progress through time). These choices are
achieved by specifying the /apse function N and the shift vector N° Only

now the four-metric can be reconstructed from the T dependence of
the three-metric, the lapse, and the shift.

The (3+1)-split Einstein equations are obtained from the Lagrangian
variation of the ADM action,

Spom = [dT N[5 do®\[=g [R+K,K® — K*]+surface terms,®  (3)

where R 1s the scalar curvature of the three-metric g, where the

extrinsic  curvature K, 1s essentially the T derivative of g, and where
K=K, The ten configuration variables are N, N* and the six independent
components of g, The Legendre transformation yields the momenta

Eﬂb = _E[Kﬂb - Kgﬂb] ({:ﬂﬂjllgatﬂd to .g,;b)! (4)

n,=0, 7m,=0 (conjugated to N, N“). (5)

® From now on, it will be our convention to drop all the “*” indices which
denote tensors on the spatial manifold; furthermore, we will use lowercase Latin
indices to enumerate the spatial coordinates, and uppercase Latin indices to
enumerate parameter time plus the spatial coordinates.

* Within the rest of this paper, we shall always neglect these terms.
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Phase space is indexed by the 20 variables (N,x,), (N“7), (g,,,%"), but the
conditions (5) on the momenta conjugated to lapse and shift must be
understood as the primary consiraints of the theory, and therefore
should be written as " = 0. By requesting that the primary constraints

be preserved through dynamical evolution, we obtain the secondary
constraints,

o= | wma - (2 |- JFer =0

—8
(superhamiltonian constraint), (6)
= -
genrl = _znﬂ b 0
(supermomentum constraints), (7)

where the bar denotes covariant differentiation on 2. Altogether, the
primary and secondary constraints restrict the allowable physical states
to a 12-dimensional constraint surface I',, in phase space. The 7, and the
¥ , are all first-class constraints, and generate gawge transformations on

the constraint surface: the effect of the m, is to change the lapse and
shift, while 7, and the ¥ respectively induce normal deformations of

the surfaces X, and generate transitions from a three-coordinate system
to another. There are no second-class constraints.

The Dirac Hamiltonian (which rules the constrained dynamics) can
be written purely in terms of the constraints:”

H, = [do’[N*%, +\'n, ] (8)

where the A? are Lagrange-Dirac multipliers. At this stage we have
already restored the hyperbolicity of the (Hamilton) equations of

motion, but at the price of introducing the four arbitrary functions of

time® A%

3 fiven before adding the constraints, the canonical Hamiltonian can be written

as H, =Idﬁ'N‘?€_‘, so we could formally absorb the Lagrange-Dirac multipliers

relative to the ¥, into the definition of the N”. Still, lapse and shift are not arbitrary
functions, but dynamical variables! The fact that the Hamiltonian vanishes on the
constraint surface is a general feature of generally covariant theories. See for instance
Henneaux and Teitelboim (1992).

% The A are also arbitrary functions of the spatial coordinates 07 although in a
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NA=AY, g, =f,lem|Al (9)

7' =0 o = ab[g*n 3-]- (10)

To remove this arbitrariness, we must fix the gauge as follows. The first
step is the gauge fixing to the secondary constraints: we choose four

functions 7%, of the g and @ (but not of N7!) that satisfy the orbit

conditions,” det |{x ¥} |#0, and we impose % ,~0 on the constraint
surface. It turns out that the requirement of time constancy for the gauge
fixings % , fixes the gauge with respect to the primary constraints. Finally,
the requirement of time constancy for these latter gauge fixings

determines the multipliers A”. So the choice of the four constraints %, is
sufficient to remove all the gauge arbitrariness.

Under the Shanmugadhasan transformation proposed by Lusanna
(2000, 2001), the superhamiltonian constraint corresponds® to a new
canonical pair: the unknown variable in which the constrain 1s the
conformal factor of g (proportional to det g), while the gauge parameter

is the conformal factor momentum 7, (which determines the normal
deformations of X.). The corresponding gauge fixing, ,~0, has the effect
of selecting the shape of XZ_. The supermomentum constraints
correspond to three canonical pairs, namely the three longitudinal
components of T”, and three gauge parameters, namely the three-
coordinates on X.. The corresponding gauge fixings, ¥ =0, have the effect

of selecting the coordinate system on X. After the gauge parameters
have been fixed, the second-order time-constancy requirement
(mentioned above) has the effect of providing partial differential
equations for the lapse and shift, in a manner compatible with the shape
of £_ and with the choice of the three-coordinates.

At the end of the canonical reduction procedure, the 12 degrees of
freedom of the constraint surface are reduced to four, the Dirac

slightly different sense: loosely speaking, there are four arbitrary multipliers az each
spatial location, so the spatial coordinates, together with “*”, play the role of
generalized degree-of-freedom indexes.

" These conditions implement the Lorentz signature of the reconstructed four-
metric, by inheriting the signature already implicit in the superhamiltonian and
supermomentum.

= H i . = - . .
* In practice, this transformation requires the solution of the superhamiltonian
constraint, but so far this result has proved elusive.
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observables q', p, (r, =1, 2) that index the reduced phase space ¥, and
that represent the two frue dynamical degrees of freedom of the

gravitational field. Fach gauge fixing creates a realization of ‘¥, with a
canonical structure implemented by the Dirac brackets associated to
that gauge. The Dirac observables satisfy the final Hamilton equations,

q = {qr!EADM}*I P, ={p.Expm} ™ (11)

where E,.,, 1s intended as the restriction of the ADM Energy to ¥, and

where the {-,-}" are the Dirac Brackets. In general, ¢"(1,0%) and p (7,69
are highly nonlocal”; a priori they are neither tensors nor invariants
under space-time diffeomorphisms, because their functional form
depends on the gauge fixing. As we shall see, on she// (when the
dynamical wvariables are restricted to the values that they can have as
solutions of the Hamilton-Dirac equations) the gauge fixing is equivalent
to the choice of a set of four-dimensional coordinates.

According to Lusanna and Pauri (2002), the Shanmugadhasan
transformation proposed by Lusanna (2000, 2001) allows the (loose)
interpretation of the Dirac observables as representing the tidal effects
of the gravitational field. Obviously, in general relativity there are no
gravitational forces in the common sense. Yet, we can introduce the
general-relativistic analogs of inertial forces with respect to the
worldlines of nongeodesic observers (Abramowicz, 1993; Abramowicz,
Nurowski and Wex, 1993). The physical meaning of the eight gauge
transformations is just to modify the imertial (reference-frame-induced)
effects; however, the presentation of both the tidal effects and the
inertial forces depends on the gauge fixings, just as the functional form
of the Dirac observables does.

2.3 Gauge groups and dynamical symmetries in the
general theory of relativity

Not all the transformations generated by the first-class constraints
(the off-shell Hamiltonian gauge group 9 are true, harmless gauge
transformations in the sense introduced by Dirac, because some of
them will join points of the constraint surface that represent different

® Because in general relativity the Shanmugadhasan transformation is highly
nonlocal.
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fnur-gf:ﬂmﬁtries,m and therefore different physical states. This property
follows from the fact that, in the Dirac Hamiltonian, among the eight
multipliers only four are arbitrary Lagrange—Dirac multipliers (the other
four are the dynamical variables lapse and shift), and that the correct
gauge-fixing procedure starts by giving only the four gauge fixings for the
secondary constraints. Going on she// (that 1s, restricting our
consideration to the solutions of the Hamilton—Dirac equations) we

introduce a functional dependence among the group descriptors of

creating a four-dimensional subgroup %,“" (the on-shel//l Hamiltonian
gange group) whose transformations are also dymamical symmetries of
the Hamilton—Dirac equations (dynamical symmetries are defined as the
transformations that map solutions of the equations of motion onto
other solutions; as such, they are an on-shell concept).

In the context of the Lagrangian formalism, the (passive) dynamical
symmetries of the Einstein equations were studied by Bergmann and
Komar (1972), who showed that the largest group of such

transformations 1s not Diff,M,[E* = f#(£")] but rather the group QO of
transformations of the form & = fu(&‘-’_ g aﬂ), These transformations map

points on points, but associate with a given point x an image point x'
that depends also on the metric field g. Hence the elements of O should

be considered as mappings from the functional space of metric fields
onto itself.

Bergmann and Komar showed that the passive diffeomorphisms,
Diff,M,, are a nonnormal subgroup of Q. We have just met another
nonnormal subgroup of Q: it is the on-shell Hamiltonian gauge group

G, or rather its Legendre pullback to configuration space, which
Bergmann and Komar call Q_ . The subgroups Diff,M, and Q__ have a
nonempty intersection, which consists of all the passive coordinate
transformations that respect the 3+1 splitting of the ADM construction.

Looking in the other direction (from configuration space to phase

space), O, represents the part of Q that is projectable into phase-space
transformations. It follows that the subgroup Q.. is defined by a

* The quotient of the constraint surface with respect to the off-shell Hamiltonian
gauge transformations is the so-called reduced  off-shell  conformal  superspace

I, =I“u/(§!. Each point of I'y (a Hamiltonian off-shell or kinematical gravitational

field) 1s an equivalence class known as off-shell conformal three-geometry for the

space-like hypersurfaces X.. Itis not a four-geometry, because it contains all the off-
shell three-geometries connected by Hamiltonian gauge transformations.
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particular choice of the four functionally independent descriptors that
are the manifold counterparts of the four independent descriptors of

e
All these groups are just different representations of the descriptive
arbitrariness of general relativity, so we expect that they should all

generate the same partition of the space Riem M, of solutions of the
Einstein-ADM equations into equivalence classes. Indeed, Bergmann and
Komar showed that

Riem .M, Riem M, Riem M,
lefF‘M‘d chn Q

Geom M, = = (12)

which is mathematically possible because both Diff,M, and Q. are
nonnormal subgroups of Q.

Only one detall 1s missing: what 1s the status of the active
diffeomorphisms  Diff, M, within this representation? Intuitively, it
seems that active and passive diffeomorphisms make up all the
operations that can be defined on the space-time manifold; however,
nobody so far has studied in detail the mathematical structure of the
group Q. It is however easy to show (Lusanna and Pauri, 2002) that at least
the infinitesimal active diffeomorphisms belong to Q, because they can
be interpreted as passive transformations with the following procedure.

Consider an infinitesimal (passive) transformation of the type

E_,'" =E_'” + X“(&,,g), This will induce the usual formal local variation of the
metric tensor,

58, = —(Xw(é g)+ X, g))- (13)

Therefore, if Sgw is the variation of the metric tensor associated with the

infinitesimal act/ve diffeomorphism, the solution X"(€,g) of these
Killing-type equations identifies a corresponding  passive Berg-
mann-Komar dynamical symmetry of Q. This should imply that all the
active diffeomorphisms connected with the identity in Diff,M, can be
reinterpreted as elements of a nonnormal subgroup of the generalized
passive transformations of Q. Clearly this subgroup is disjoint from the
subgroup Diff,M,: note that this is possible because diffeomorphism
groups do not possess a canonical identity. Given this, we could naturally
guess that O is a mix of passive and active diffeomorphisms, because
the active and passive diffeomorphisms, being nonnormal subgroups of
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0, should, as 1t were, fill O densely in a suitable topology.
Finally, we complete Eq. (12): because obviously we have

G = Rliem My _ szam M, | (14)
Diff, M,  Diff M,

we obtain the final definitton of the equivalence classes of on-shel/l or
dynamical gravitational fields,

Cheioen i, = Riem M, RmmM RlemM R:emA/L (15)

Diff, M, lef M, Q..n Q

In other words, any of the groups Diff,M,, Diff, M,, O_ , and O can be

used to implement Leibniz equivalence on shell.

2.4 The Bergmann—-Komar invariants: metrical structure
and the physical individuation of points in the (un)real
world

Let us now take a quick detour back to four-dimensional (so to
speak) general relativity. We note with Bergmann and Komar’ that for a
vacuum solution of the Einstein equations, in the hypothesis that space-
ttme admits 7o symmetries, there are exactly four functionally
independent scalars that can be written using the lowest possible
derivatives of the metric.” These are the four Weyl scalars (the

eigenvalues of the Weyl tensor), here written in Petrov compressed
notation,

w, = Tr(gW W), (106)
w, = Tr(gWeW), (17)
w, = Tr(gW gW gV, (18)
w, = Tr(eW o WeWw), (19)

where g is the four-metric, W is the Weyl tensor, and € is the Levi—Civita
totally antisymmetric tensor.

! See Bergmann (1960, 1962, 1971, 1977); Bergmann and Komar (1960).
* The fact that there are just fowr independent invariants is crucial for the
purpose of point individuation, and it should not be regarded as a coincidence. A fter

all, recall that in general space-times with matter there are 14 invariants of this kind!
(Géhénieau and Debever, 1956)
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Bergmann and Komar then propose that we build a set of intrinsic
coordinates for the point-events of space-time as four functions of the
5

1" = 1" w, [ g(x),08(x)]} (20)

Indeed, under the hypothesis of no space-time symmetries,” the [
can be used to label the point-events of space-time, at least locally.”
What is more, the value of the intrinsic coordinates at a point-event can
be extracted (in principle) by an actual experiment designed to measure

the w, (see Sec. 3). Because they are functionals of scalars, the I'' are
invariant under passive diffeomorphisms (therefore they do not define a
coordinate chart in the usual sense), and by construction they are also
constant under the drag-along of tensor fields induced by active
diffeomorphisms.”

The metric can be rewritten with respect to the intrinsic
coordinates:

T1A] 718
ﬂ[AH] s 51 5)’ v

21
Soh o 8 (21)

The 2" represent the ten imvariant scalar compoments of the
metric; of course they are not all independent, but they should satisfy six

" Qur attempt to use intrinsic coordinates to provide a physical individuation of

point-events would prima facie fail in the presence of symmetries, when the e
become degenerate. This objection was originally raised by Norton (1988) as a
critique to manifold-plus-further-structure (MPES) substantivalism  [according  to
which the points of the manifold, conjoined with additional local structure such as
the metric field, can be considered physically real; see for instance Maudlin (1988)].
Several responses are possible. First, although to this day all the &nown exact
solutions of the Einstein equations admit one or more symmetries, these
mathematical models are very idealized and simplified; in a realistic situation (for
instance, even with two masses) space-time is filled with the excitations of the
gravitational degrees of freedom, and admits no symmetries at all. Second, the
parameters of the symmetry transformations can be used as supplementary
individuating fields, since, as noticed by Stachel (1993), they also depend on metric
field, through its isometries. Third, and most important, in our analysis of the
physical individuation of points we are arguing a question of principle, and therefore
we must consider gemeric solutions of the Einstein equations rather than the null-
measure set of solutions with symmetries.

* Problems might arise if we try to extend the labels to the entire space-time: for
instance, the coordinates might turn out to be multivalued.

% Already at this stage, we see that this is just the right method to realize the
equivalence class of points to which Bartels was alluding (Bartels, 1994).
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functional restrictions that follow from the Einstein equations. However,

Eq (21) 1S dECEiviﬂg, because the EMR]

of its partial derivatives (through the I'"). It should be noted that, in a
sense, the freedom to express the metric using any set of coordinates is

are functionals of the metric and

still present in the choice of the four functions I'* of the Weyl scalars.
What is more, given any coordinatization of a space-time without
symmetries, it 1s possible to reproduce the tensorial components of the

metric using a suttable set of [ 4]

Decomposing the w, with the 3+1 splitting outlined in Sec. 2.2, we
realize [again with Bergmann and Komar (1960)] that the four Weyl
scalars w,. do not depend on lapse and shift. This circumstance is
crucial, because it means that we can wuse suitable functions of the w. a s
gauge fixings to the secondary constraints® (Lusanna and Pauri, 2002).

To do so, we first write the Bergmann-Komar intrinsic coordinates as
functionals of the ADM variables,

"[w,(8,08)1= Z'"[w,(g,m)]; (22)

we then select a completely arbitrary coordinate system o =[1,6°]

adapted to the X, surfaces; finally, we apply the gauge fixing I' defined by

1" =0* = Z"w,[(g(c®), ()] = 0; (23)

of course the functions Z'"! must be chosen to satisfy the orbit con-
ditions {im,?ﬁ’ﬂ}iﬂ, which ensure the independence of the %” and
carry information about the Lorentz signature. The effect is that the
evolution of the Dirac observables, whose dependence on space (and
on parameter time) is indexed by the chosen coordinates o

A : v a ‘
reproduces the 0”7 as the Bergmann—Komar intrinsic coordinates:

o = ZMw,(q (%), p,(c°) |D)], (24)

where the notation w, (g, p|I') represents the functional form that the
Weyl scalars w, and the Dirac observables g', p, assume in the chosen

gauge. Eq. (24) 1s just an identity with respect to the 0. The price that we
have paid for this achievement is of course that we have broken general

* Please refer back to Sec. 2.2, just after Eq. (10).




(2002) : EPHEMERAL POINT-EVENTS 289

covariance!

At first this result may sound surprising: diffeomorphism-invariant
quantities, such as the intrinsic coordinates, are known as Bergmann
observables, and are often identified with the only locally measurable
variables of the pure gravitational field (because being diffeomorphism
invariants they can be obtained using the coordinate system corresp-
onding to any experimental arrangement). From the Hamiltonian view-

-

point, however, they ate gauge-dependent” quantities that (in a sense)
can be arranged to assume any functional dependence on X_.

The crucial point to remember here 1s that the gauge transformations
of %, can actually link different four-geometries; correspondingly, a
complete gauge fixing can modify the value of diffeomorphism-invariant

quantities.” So we can take any four-geometry, find its Cauchy data on X,
and then move along its 9, gauge orbit to create any arbitrary structure
for the Weyl scalars; but the final point on the constraint surface will
represent a different four-geometry. On the other hand, the on-shell

Hamiltonian gauge group %“" contains only transformations that are
counterparts of active or passive projectable diffeomorphisms (the ones
that are compatible with the 3+1 split).

After canonical reduction and only for the solutions of the equations
of motion, Eq. (24) becomes a sfromg relation, and it amounts to a

definition of the four coordinates G, providing a physical individuation
of any point-event, in the gauge-fixed coordinate system, in terms o f
the true dynamical gravitational degrees of freedom.

The virtue of this elaborate setup is not that it selects a set of
physically preferred coordinates, because by modifying the functions
I we have the possibility of implementing any coordinate
transformation. So diffeomorphism invariance reappears under a
different semblance: we find exactly the same functional freedom
whether we choose a set of coordinates on M, the functions Z'", or the

Y Canonical reduction (which creates the distinction between gauge-dependent
quantities and Dirac observables) is made off she/l, that is, before solving the
equations of motion. It is not known so far whether suitable diffeomorphism-
invariant intrinsic coordinates can also become Dirac observables on shell, that 1s,
on the space of solutions to the equations of motion. See however Scc. 4.

% FHach three-metric in the conformal gauge orbit has a different three-Riemann
tensor, and different three-curvature scalars. Since four-tensors and four-curvature
scalars depend on lapse, shift, their gradients, and on the conformal-factor

momentum, most of these objects are in general gauge variables from the
Hamiltonian point of view.
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gauge fixing. Thus, it turns out that, oz she//, at the Hamiltonian level as
well as the Lagrangian level, gauge fixing is clearly synonymous with the
selection of manifold coordinates. Instead, we are now able to claim
that any coordinatization of the manifold can be seen as embodying the
physical individuation of points, because it can be implemented” as the
Komar-Bergmann intrinsic coordinates after we choose the correct ZV
and we select the correct gauge. The byproduct of the gauge fixing is the
identification of the form of the physical degrees of freedom as nonlocal
functionals of the metric and curvature.

Summarizing, each of the point-events of space-time 1s endowed
with its own physical individuation (the right metrical fingerprint!) as the
value, as it were, of the four canonical coordinates (just four!), or Dirac
observables which describe the dynamical degrees of freedom of the
gravitational field. However, these degrees of freedom are unresolveably
entangled with the structure of the metric manifold in a way that is
strongly gauge dependent.

As a final consideration, let us point out that Eq. (24) i1s a numerical
identity that has an inbuilt noncommutative structure, deriving from the
Dirac—Poisson structure on its right-hand side. The meaning of this
structure 1s not clear at the classical level, but we believe that it could be
relevant to the quantization of general relativity.

3. The individuation of points in the real world

The philosophical analysis of the general-relativistic notion of space-
time is developed most often (and this paper is no exception) on the
geometrodynamical formulation of general relativity, which pictures
matter following the straightest lines, so to speak, in a curved space-time
arena deformed by gravitation. There are many reasons for this
preference: the geometric theory is indeed very beautiful, and it appears
to complete and extend more fully the critique of space-time structure
begun with special relativity. Within this paradigm, the prototype
solution 1s a strongly curved vacuum space-time with no symmetries. For
such a space-time, coordinate system are freely interchangeable, and of
course they are almost completely irrelevant to the physical
individuation of points. For such a space-time, the philosophical

arguments about the Hole Argument and about general covariance carry
their full weight.

¥ Again, at least locally.
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However, our universe is not a strongly curved space-time, and it is
not a vacuum solution: rather, it resembles most closely the flat space-
time of special relativity, and it contains much matter, organized in
structures at many scales. Although we know, in theory, that all
coordinate frames are equally acceptable, in this real physical world we
manage to keep the time, keep our orientation, navigate the solar
system, and make sense of the universe with a handful of very special
coordinate systems. These systems are precisely the ones that recognize
that gravity is weak (so it can be treated as a correction to flat space-
time) and that matter with structure is available to provide useful points
of reference (in a relational sense).

Indeed, Soffel (1989) defines the purpose of astrometry (the theory
of constructing reference frames) as “the materialization of a global,
nonrotating, quast-inertial reference frame, in the form of a fundamental
catalogue of stellar positions and proper motions.” On a smaller scale,
the preferred reference frames are those that provide a simple,
understandable form for the dynamical equations that rule the motions
of celestial bodies. In the case of the solar system, a suitable reference
frame 1s the barycentric post—Newtonian frame, where the metric
deviates from the Minkowski metric by simple corrections, and where
the equations of motion are slightly modified Newtonian equations

(Soffel, 1989).

Are these coordinate systems wmethodologically preferred because of
their convenience? If so, can they confer identity to the point-events of
space-time? Both questions deserve some investigation; however, we
should note that they do not refer directly to the philosophical analysis
of general relativity in the generic case, but rather in the case of a
specific solution (our universe). So we should be cautious when we
discuss the connection between the physical individuation of points (as
we have outlined 1t) and the theory of measurement in general relativity,
with its many real-world applications (such as time transport,
geographic positioning and solar-system navigation). The practice (but
not the theory) of general-relativistic measurements is necessarily a
consequence of the particular solution of the Einstein equations that we
happen to inhabit.”

* On the contrary, the physical individuation of points events by the analysis of
the local metric fingerprint would be very relevant to orientation and navigation in a
hypothetical world that is devoid of matter, and where gravity is very strong and
unpredictable.
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Still, we wish to draw a scenario of how the physical individuation of
points could be implemented (in principle) as an experimental setup
and protocol for positioning and orientation. This construction, which
could also be discussed more abstractly as a system of axioms" for the
empirical foundation of general relativity, closes the coordinative circuit
that joins the mathematical formulation of general relativity (and in
particular of the Hamiltonian initial-value problem) to the practice of
general-relativistic measurement, and to the physical individuation of
space-time points. Three steps are necessary.

1. We define a radar-gauge system of coordinates in a finite four-
dimensional volume, by means of a network of artificial satellites
similar to the Global Positioning System (see for instance Ashby
and Spilker, 1995). The GPS is a constellation of 24 satellites on
quasicircular 20-km-high orbits around the Earth; each GPS satellite
carries an atomic clock accurate to the nanosecond, and
continuously broadcasts its own position and time,” as computed
within an accurate model of its motion in the gravitational field of
the Earth. By comparing the signals received from four satellites at
a given instant of time (psewdo-ranging), the GPS receivers on the
surface of the Earth are able to determine their radar distance from
the satellites, and therefore to compute their own latitude, long-
itude, and altitude with a precision of a few tens of meters, and to
track the international standard time with a maximum error of a

" We owe the classical paper on the axiomatics of general relativity to Ehlers,
Pirani and Schild (1972), who start out by defining basic objects such as light rays,
freely falling test particles, standard clocks, and so on. In their scheme, light-ranging
measurements are then used to reveal the conformal structure of space-time, while
the free fall of test bodies i1s used to map out the projective structure. Under an axiom
of compatibility [well corroborated by experiment; see Perlick (1994)] these two
classes of observations determine completely the structure of space-time.

We note here that both the Ehlers—Pirani—Schild axiomatics (based on idealized
primitive physical objects and operations) and our discussion of coordinate systems
and metric field measurements in terms of technological instruments (GPS satellites)
imply that the coordination of the mathematical theory of general relativity to the
physical quantities defined operationally cannot be excised from the wider context
of a comprehensive theory of physical reality, where the idealized primitive objects
and operations of Ehlers, Pirani and Schild are, in essence, implemented by our
technological instruments.

2 More precisely, the clocks on the satellites are biased to yield the international
standard time; that is, the proper time elapsed on the geoid, the surface of constant

cffective gravitational potential that sits very close to the surface of the Earth (at sea
level).
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e
few nanoseconds.

The GPS recetvers are able to determine their actual position (that
ts, the set of their four post—Newtonian, geocentric coordinates,
with the time coordinate rescaled to the international standard
time), because the entire GPS system 1is predicated on the advance
knowledge of the gravitational field of the Earth and of the
trajectories of the satellites, which in turn allows the coordinate
synchronization of the satellite clocks to post—Newtonian time. If]
as in our case, the geometry of space-time and the motion of the
satellites are not known in advance, it would be still possible for the
recetvers to obtain four, as it were, conventional coordinates by
operating a full-ranging protocol (involving bidirectional com-
munication) to four super-GPS satellites that broadcast the time of
their standard, unsynchronized clocks. The problem of patching
the coordinates obtained from different four-tuples of satellites 1is
analog to dertving the coordinate transformations between
overlapping patches within an atlas of a differential manifold, and it
should be tractable by maintaining full-ranging communication
between the satellites themselves.

Summarizing, our super-GPS constellation provides a radar-gauge
system of coordinates (without any direct metrical significance) for
all the point-events within a finite region of space-time" :

Op =(T,0R);  Tx=0 defines X . (25)

2. By means of repeated measurements of the motion of four test
particles” (Ciufolini and Wheeler, 1995, pp. 34-36; see also Rovelli,
2001) and gyroscopes (to measure N”!), with technologies similar
to the Gravity Probe B space mission (GPB), suitable spacecraft
could then measure the components  of the four-metric with
respect to the radar-gauge coordinates,

433{5.3}(".&15:? )s (26)

and by measuring the spatial and temporal variation of g, we could

 Within the Ehlers—Pirani—-Schild axiomatics, this corresponds to determining

the conformal structure of space-time.
# For vacuum gravitational fields. Six test particles are needed in general space-

times.
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then compute (in principle) the components of the Weyl tensor,
and the Weyl invariant scalars.”

3. By steps 1 and 2, we have obtained a slicing of space-time 1into

surfaces 2, , and a set of coordinates O on the surfaces, both
defined operationally, furthermore, we have determined the

components of the metric and the local value of the Weyl scalars
with respect to the ¢”. We can then solve (in principle) for the

. =l A "
functions Z' that reproduce the radar-gauge coordinates as radar-
gauge intrinsic coordinates,

op = Z"[w,[g(o}), n(op)]l. (27)

Finally, we can impose the gauge fixing that enforces this particular
system of intrinsic coordinates,

x* =c* - 2w, [ g(c"), n(c%)]| = 0; (28)

at the end of the canonical reduction procedure, we obtain the
structure of the Dirac observables ¢’, p, as nonlocal functionals of g

and T, and we reconstruct the intrinsic coordinates as functions of
the Dirac observables in each point-event of space-time:

oy =2Z"w.lq"(al), p,(aE)). (29)

Thus, the radar-gauge coordinates are legitimized as intrinsic
coordinates that, because of their well-defined dependence on the
Dirac observables, can endow the point-events of space-time with
physical individuality. Of course, the particular form of this
dependence, and the particular presentation of the true degrees of
freedom of the gravitational field is gauge dependent.

This procedure closes the coordinative circuit of general relativity,
linking individuation to experimentation.

® Within the Ehlers—Pirani-Schild axiomatics, this corresponds to determining
the projective structure of space-time.
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4. Conclusion: finding the last remnant of physical
objectivity

From the point of view of the constrained Hamiltonian formalism,
general relativity is a gauge theory like any other; however, it is radically
different from the physical point of view. In addition to creating the
distinction between what is observable™ and what is not, the gauge
freedom of general relativity 1s unavoidably entangled with the
definition—constitution of the very s/age, space-time, where the play of
physics 1s enacted. In other words, the gauge mechanism has the double
role of making the dynamics unique (as in all gauge theories), and of
fixing the spatio-temporal reference background a7 the mathematical

level.

In gauge theories such as electromagnetism, we can rely from the
beginning on empirically validated, gauge-invariant dynamical equations
for the /oca/ fields. This 1s not the case for general relativity: in order to
get dynamical equations for the basic field in a /oca/ form, we must pay
the price of general covariance, which weakens the objectivity that the
spatio-temporal description could have had 4 priori. Recalling the
definition of gauge theory given by Henneaux and Teitelboim (see the
beginning of Sec. 2.1), we could say that the introduction of extra
variables does make the mathematical description of general relativity

more transparent, but it also makes its physical interpretation more
obscure and intriguing, at least at first sight.

By now, it should be clear that the Hole Argument has nothing to do
with the alleged indeterminism of general relativity as a dynamical theory.
In our discussion of the initial-value problem within the Hamiltonian
framework we have shown that, on she//, a complete gauge-fixing (which
could in theory concern the whole space-time) 1s equivalent to the
choice of an atlas of coordinate charts on the space-time manifold, and
in particular within the Hole. At the same time, we have seen that the
active diffeomorphisms of the manifold can be interpreted as passive
Hamiltonian gauge transformations. Because the gauge must be fixed
before the initial-value problem can be solved to obtain a solution
(outside and inside the Hole), it makes little sense to apply active
diffeomorphisms to an already generated solution to obtain an allegedly
“different” space-time. Conversely, it should be possible to generate
these “different” solutions by appropriate choices of the initial gauge

% In the Dirac or Bergmann sense.
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fixing.

In addition, we have established that within the Hamiltonian
framework we can use a gauge-fixing procedure based on the
Bergmann—-Komar intrinsic  coordinates to turn the primary
mathematical individuation of manifold points into a physical
individuation of point-events that is directly associated with the value of
the gravitational degrees of freedom (Dirac observables). The price to
pay 1s the breaking of general covariance. General covariance thus
represents a horizon of 4 priori possibilities for the physical
constitution of the space-time, possibilities that must be actualized
within any given solution of the dynamical equations. What here we
called physical constitution embodies at the same time the chrono-
geometrical, the gravitational, and the causal properties of the space-
time stage.

We have shown that this conceptual physical individuation can be
implemented (at least in principle) with a well-defined empirical
procedure that closes the coordinative circuit. We believe that these
results cast some light over the intrinsic structure of the general
relativistic space-time that had disappeared within Leibniz equivalence
and that was the object of Michael Friedman’s non-trivial question.

In 1972, Bergmann and Komar wrote (Bergmann and Komar, 1972):

[-.-] in general relativity the identity of a world point is not preserved under
the theory’s widest invariance group. This assertion forms the basis for the
conjecture that some physical theory of the future may teach us how to

dispense with world points as the ultimate constituents of space-time
altogether.

Indeed, would it be possible to build a fundamental theory that is
grounded in the reduced phase space parametrized by the Dirac
observables? This would be an abstract and highly nonlocal theory of
gravitation that would admit an infinity of gauge-related, spatio-
temporally local realizations. From the mathematical point of view,
however, this theory would be just an especially perspicuous
instantiation of the relation between canonical structure and locality that
pervades contemporary theoretical physics nearly everywhere.

On the other hand, beyond the mathematical transparency and the
latitude of choices guaranteed by general covariance, we need to
remember that /oca/ spatio-temporal realizations of the abstract theory
would still be needed for implementation of measurements in practice;



(2002) EPHEMERAL POINT-EVENTS 297

conversely, any real-world experimental setting entails the choice of a
definite /ocal realization, with a corresponding gauge fixing that breaks
general covariance.

Can this basic freedom 1n the choice of the /lcal/ realizations be
equated with a “taking away from space and time the last remnant of
physical objectivity,” as Einstein suggested? We believe that if we strip
the physical situation from Einstein’s “spatial obsession” about realism
as locality (and separability), a significant kind of spatio-temporal
objectivity survives. It 1s true that the functional dependence of the Dirac
observables upon the spatio-temporal coordinates depends on the
particular choice of the latter (or equivalently, of the gauge); yet, there is
no a priort physical individuation of the points independently of the
metric field, so we cannot say that the physical-individuation procedures
corresponding to different gauges individuate physical point-events that
are really different. Given the conventional nature of the primary
mathematical individuation of manifold points through #n-tuples of real
numbers, we could say instead that the rea/ point-events are constituted
by the nonlocal values of gravitational degrees of freedom, while the
underlying point structure of the mathematical manifold may be
changed at will.

In conclusion, we have presented evidence that the non-—point-like
texture encoded in the Dirac observables allows a conception of space-
time that is a new kind of structuralism, in the tradition of Newton’s De
Gravitatione, only much richer. This is even more evident in the case of
general relativity with matter, where we have Dirac observables both for
the gravitational field and for the matter fields, and where the former are
modified in their functional form by the presence of matter. Since the
gravitational Dirac observables will still provide the individuating fields
for point-events (according to the conceptual structure discussed in this
paper), matter will come to influence the very individuation of points.
Thus, our structuralist view is richer also in a deeper sense, because it
includes elements in the tradition of both absolutism (space has an
autonomous existence, independently of other bodies or matter fields)
and relationism (the nature of space depends on the relations between
bodies, or space has no reality independently of the fields it contains).

A future direction of investigation 1is the following: looking at the
Bergmann—Komar intrinsic components of the metric [see Eq. (21)], and
calculating the Dirac brackets of the Weyl scalars, it might be possible to
define four diffeomorphically invariant and canonically conjugated
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variables that are also Dirac observables on she/l. This achievement
would unify the general-covaritant and the Dirac—-Bergmann-Komar
notion of observable, and would provide explicit evidence for the
objectivity of point-event individuation. Finally, the procedure of
individuation that we have outlined transfers, as it were, the
noncommutative Poisson—-Dirac structure of the Dirac observables onto
the individuated point-events; the physical implications of this
circumstance might deserve some attention in view of the quantization
of general relativity.
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